NORD STREAM 2
VEDENALAISEN MELUN MALLINNUS, SUOMI
<table>
<thead>
<tr>
<th>Asiakirjan numero: W-PE-EIA-PFI-REP-805-030600FI-02</th>
</tr>
</thead>
</table>
SISÄLLYS

1. **JOHDANTO**
2. **HANKKEEN KUVAUS**
3. **VEDENALAISEN MELUN LÄHTEET**
 3.1 Mallinnustoiminnot ja -asemat Suomessa
 3.1.1 Kiivaineksen kasaus
 3.1.2 Ammusten raivaaminen
4. **VEDENALAINEN ÄÄNI**
 4.1 Sovellettavat akustiikkaparametrit
 4.2 Vedenalaisten äänilähteiden tasot
5. **VEDENALAISEN MELUN ETENEMISEN MALLI**
6. **VEDENALAISEN MELUN VAikutusten ARVIOINTI**
 6.1 Kalat
 6.2 Merinisäkkäät
 6.3 Merinisäkkäti ja kalojen koskevat kriteerit
7. **VEDENALAISEN MELUN ETENEMISEN MALLIN TULOKSET**
 7.1 Kiivaineksen kasausksesta aiheutuvan melun tasot ja äänispektri
 7.2 Ammusten raivaamisen äänilähteiden tasot ja taajuusalue
 7.3 Syvyysohjekset
 7.4 Geokustiset ominaisuudet
8. **VEDENALAISEN MELUN MALLINNUUKSEN TULOKSET**
 8.1 Äänen etenemisen mallin skenaariot
 8.2 Etäisyydet arvioinnissa sovellettaviin kynnysarvioihin
 8.3 Vedenalaisen melun profiilikävijät
9. **JOHTOPÄÄTÖS**
10. **LÄHTEET**

<table>
<thead>
<tr>
<th>#</th>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>JOHDANTO</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>HANKKEEN KUVAUS</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>VEDENALAISEN MELUN LÄHTEET</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Mallinnustoiminnot ja -asemat Suomessa</td>
<td>5</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Kiivaineksen kasaus</td>
<td>5</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Ammusten raivaaminen</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>VEDENALAINEN ÄÄNI</td>
<td>8</td>
</tr>
<tr>
<td>4.1</td>
<td>Sovellettavat akustiikkaparametrit</td>
<td>8</td>
</tr>
<tr>
<td>4.2</td>
<td>Vedenalaisten äänilähteiden tasot</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>VEDENALAISEN MELUN ETENEMISEN MALLI</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>VEDENALAISEN MELUN VAikutusten ARVIOINTI</td>
<td>12</td>
</tr>
<tr>
<td>6.1</td>
<td>Kalat</td>
<td>12</td>
</tr>
<tr>
<td>6.2</td>
<td>Merinisäkkäät</td>
<td>12</td>
</tr>
<tr>
<td>6.3</td>
<td>Merinisäkkäti ja kalojen koskevat kriteerit</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>VEDENALAISEN MELUN ETENEMISEN MALLIN TULOKSET</td>
<td>15</td>
</tr>
<tr>
<td>7.1</td>
<td>Kiivaineksen kasausksesta aiheutuvan melun tasot ja äänispektri</td>
<td>15</td>
</tr>
<tr>
<td>7.2</td>
<td>Ammusten raivaamisen äänilähteiden tasot ja taajuusalue</td>
<td>15</td>
</tr>
<tr>
<td>7.3</td>
<td>Syvyysohjekset</td>
<td>18</td>
</tr>
<tr>
<td>7.4</td>
<td>Geokustiset ominaisuudet</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>VEDENALAISEN MELUN MALLINNUUKSEN TULOKSET</td>
<td>22</td>
</tr>
<tr>
<td>8.1</td>
<td>Äänen etenemisen mallin skenaariot</td>
<td>22</td>
</tr>
<tr>
<td>8.2</td>
<td>Etäisyydet arvioinnissa sovellettaviin kynnysarvioihin</td>
<td>22</td>
</tr>
<tr>
<td>8.3</td>
<td>Vedenalaisen melun profiilikävijät</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>JOHTOPÄÄTÖS</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>LÄHTEET</td>
<td>32</td>
</tr>
</tbody>
</table>
LUETTELO LYHENTEISTÄ

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGPS</td>
<td>differentiaalinen GPS-paikannusjärjestelmä, Differential Global Positioning System</td>
</tr>
<tr>
<td>dB</td>
<td>desibel</td>
</tr>
<tr>
<td>EEZ</td>
<td>talousvyöhyke, exclusive economic zone</td>
</tr>
<tr>
<td>EU</td>
<td>Euroopan unioni</td>
</tr>
<tr>
<td>FTA</td>
<td>Suomen liikenneviraston merikartoituspalvelu</td>
</tr>
<tr>
<td>ICES</td>
<td>Kansainvälinen meritutkimusneuvosto, International Council for the Exploration of the Sea</td>
</tr>
<tr>
<td>HELCOM</td>
<td>Itämeren suojejulakomissio, Baltic Marine Environment Protection Commission</td>
</tr>
<tr>
<td>M</td>
<td>ammusten raivaaminen</td>
</tr>
<tr>
<td>NSP</td>
<td>Nord Stream -putkijärjestelmä</td>
</tr>
<tr>
<td>NSF2</td>
<td>Nord Stream 2 -putkijärjestelmä</td>
</tr>
<tr>
<td>P</td>
<td>paine</td>
</tr>
<tr>
<td>P₀</td>
<td>vertailupaine</td>
</tr>
<tr>
<td>Pa</td>
<td>pascal</td>
</tr>
<tr>
<td>PEAK</td>
<td>huippupainetaso, peak pressure level</td>
</tr>
<tr>
<td>PTS</td>
<td>pysyvä kuulonalenema, permanent threshold shift</td>
</tr>
<tr>
<td>RMS</td>
<td>nelioillon keskiarvo, root mean square</td>
</tr>
<tr>
<td>ROV</td>
<td>kauko-ohjattava laite, remotely operated vehicle</td>
</tr>
<tr>
<td>RP</td>
<td>kiviaineksen kasaus, rock placement</td>
</tr>
<tr>
<td>SEL</td>
<td>äänialtistustaso, sound exposure level</td>
</tr>
<tr>
<td>SEL(cum)</td>
<td>kumulatiivinenäänialtistustaso</td>
</tr>
<tr>
<td>SPL</td>
<td>äänenpainetaso, sound pressure level</td>
</tr>
<tr>
<td>TTS</td>
<td>tilapainen kuulonalenema, temporary threshold shift</td>
</tr>
</tbody>
</table>
1. JOHDANTO

Vaikutusten arvioinnin menetelmät ja vaikutusten raja-arvot noudattavat Euroopan komission merivesien hyvästä ekologisesta tilasta tekemän päätöksen (2010/477/EU) 11. kuvaajan ohjeita, joissa yleisesti todetaan seuraava: "Energian merenjohtaminen, myoskaan vedenalainen melu, ei ole tasoitaa sellaista, että se vaikuttaisi haitallisesti meriymypristöön."

2. HANKKEEN KUVUAS

NSP2-kaasuputki on Itämeren poikki kulkeva putkijärjestelmä, joka tuo maakaasua Venäjän suurista varannoista suoraan Euroopan unionin (EU) maakaasumarkkinoille. Putkijärjestelmä parantaa EU:n toimitusvarmuutta vastamalla maakaasun kasvavaan tuontivajeeseen ja kattamalla vuoteen 2020 mennessä ennakoitusti esiintyvät tarve- ja toimitusriskit.

NSP2-hankkeen pohjana ovat Nord Stream -kaasuputken onnistunut rakentaminen ja toiminta. NSP on jo saanut tunnustusta siukoista ympäristö- ja turvallisususstandardistaan, ympäristöä säästävä logistiikastaan ja avoimesta kuulemismenetelystään. NSP2-hankkeen kehittäjä on hankeyhtiö Nord Stream 2 AG.

3. VEDENALAISEN MELUN LÄHTEET

Putken rakentamisvaiheeseen ja käyttöön Suomessa kuuluu töitä, jotka mahdollisesti aiheuttavat merkittävää vedenalaista melua ja joilla voi olla todellisia melusta johtuvia vaikutuksia kaloihin ja/ tai merinisäkäisiin. Vedenalaisesta melua aiheuttavia työvaiheet ovat:

- kiviaineiksen kausaus
- ammusten rävävääminen
- putken käyttö
- putkenläsku

Työssä käytetty vedenalaisten melun lähdetaset ja taajuustiedot on kerätty, analysoitu ja korjattu niin, että niitä voidaan soveltaa erikseen määrätestyyn toimintoon.

Jokaisen melua aiheuttavan toiminnan aktiivisuusaikea on määritetty niin, että sen perusteella voidaan ennustaa kumulatiiviset, keskimääräiset ja suurimmat mahdolliset melutasot ja laajat niiden perusteella vaikutusaluekartat. Rambollin akustikka-asiantuntijat ja meriologit ovat yhdessä määrittäneet sovellettavat vedenalaisen melun parametrit, joilla arvioidaan tiettyihin kalal- ja merinisäkäslajeihin mahdollisesti kohdistuvia vaikutuksia.
3.1 Mallinnustoiminnat ja -asemat Suomessa

Vedenalainen melun mallinnus tai seuranta koski NSP-hankkeessa putken laskua ja putkilinjan kaivamista. Tulosten mukaan näiden rakennustöiden melu oli samalla tasolla kuin muusta laivaliikenteestä johtuva taustamelu.

Vedenalaisen melun nykytilan mittauksissa (Luode, 2016), jotka suoritettiin toiminmassa olevan Nord Stream -putken lähistöllä, ei pystytty erottamaan putkesta aiheuttuvaa melua Itämerellä Suomen vesillä liikkuvien laivojen aiheuttamasta melusta. Putken toiminnan ei sen vuoksi katsota aiheuttavan merkittävää melua Suomen vesillä.

Tulosten täydentämiseksi laadittiin melumallinnukset NSP2-hanketta varten Suomen talousvyöhykkeellä seuraavissa kohteissa:

- kiviaineksen kasaus kahdessa todennäköisessä kohteessa (katso kuva 3-1 ja taulukko 3-1);
- ammusten raivaaminen neljässä tyypillisessä kohteessa, joissa ammuksia on mahdollisesti raivattava ja jotka sijaitsevat herkkien kohteiden lähellä (katso kuva 3-2 ja taulukko 3-1).

3.1.1 Kiviaineksen kasaus

3.1.2 Ammusten raivaaminen

Taulukko 3-2. Syyt ammusten raivaamisen melun mallinnuspaikkojen valintaan.

<table>
<thead>
<tr>
<th>Sijaintipaikat</th>
<th>Kuvaus (idästä länteen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1_fin</td>
<td>Itämerenrannan kannatt itäisellä Suomenlahdella; matalat alueet ja harmaahylkeelle tärkeitä alueet pohjoisessa, lähellä Venäjän ja Viron rajaa: mahdolliset rajat ylittävät vaikutukset</td>
</tr>
<tr>
<td>M2_fin</td>
<td>Suuri ammusten tiheys; Sandkallanin Natura 2000-alueesta sekä Sandkallanin ja Stora Kolhakanin hykeiden rauhoitusalueesta etelään</td>
</tr>
<tr>
<td>M3_fin</td>
<td>Suuri ammusten tiheys; lianina Kalibädanin hykeiden rauhoitusalueella sekä Kalibädanin luodot ja vesialue Natura 2000-alueella, sillä suojellaan harmaahylkeita</td>
</tr>
<tr>
<td>M4_fin</td>
<td>Suuri ammusten tiheys; BALSAM-tietojen mukaisia noppahavaintoja</td>
</tr>
</tbody>
</table>
4. VEDENALAINEN ÄÄNI

Vedenalainen ääni, kuten ilmassa kulkeutuva ääni, ilmentää äänilähteen aiheuttamaa häiriötä välilaineessa (tässä tapauksessa vedessä). Häiriö etenee kolmijulotteisesti äänennopeudella.

Ääni etenee eri nopeuksilla välilaineesta riippuen. Äänen nopeuden määrittää välilaineen tiheys ja kokoopunristuvuuus. Tiheys tarkoittaa aineen massaa suhteesa sen tilavuuteen. Puuristuvuudella mitataan sitä, miten paljon aineetta voi puristaa kokoon tietyllä paineella. Mitä tiheämpää ja kokoopunristuvampi välilaine on, sitä hitaammin ääniallot etenevat. Vesi on huomattavasti tiheämpää kuin ilma, mutta koska se on lähes kokoopunristumatonta, ääni etenee vedessä noin neljä kertaa nopeammin kuin ilmassa. Äänen nopeuteen vaikuttaa myös lämpötila. Ääniallot etenevat sitä nopeammin, mitä korkeampi lämpötila on.

Vedenalaiasta ääntä voidaan mitata paineen vaihteluna. Sitä kuvataan äänenpaineena ja mitataan paineherkällä laitteella (hydrofonilla).

Äänen paineamplitudilla on laaja vaihteluväli. Painetasoja mitataan sen vuoksi desibelin (dB) logaritmisella asteikolla. Vedenalaisen äänenpaineen taso määritetään desibleinä seuraavasti:

\[
\text{Äänenpaineen taso (SPL)} = 20 \log_{10} \left(\frac{P}{P_0} \right)
\]

P on paine ja P₀ on viitepaine. Vedenalaisen äänen viitepaine on 1 mikropascal (μPa), mikä eroaa ilmassa etenevän äänen paineen viitearvoista. Tästä syystä ilmassa ja vedessä mitatut äänenpaineen tasot eivät ole suoraan verrattavissa.

Äänen mittauksen vertailuyksikköön on yleensä paineen yksikkö pascal, (Pa) koska ääni muodostuu paineen vaihtelusta. Yleensä ääntä kuvataan desibellillä (dB). Ilmassa etenevää ääntä kuvattaessa äänen vertailuarvona käytetään matalinta ihmiskorvan erottamaa äänenpainetasoa, joka on 20 μPa. Vedenalaiasta ääntä kuvattaessa vertailuyksikkö on 1 μPa. Äänenpaine, jonka vertailuyksikkönä on 20 μPa, muunnetaan vertailuyksikkön 1 μPa kertoimella 20 log (20/1). Ensimmäiseen määään sisä listataan 26 dB. Siten 60 dB vertailuarvona 20 μPa ilmassa on sama kuin 86 dB vertailuarvona 1 μPa vedessä. Kaikki vedenalaiset äänenpainetasot ilmaistaan muodossa dB vertailuarvona 1 μPa. Vedessä äänilähteen voimakkuus määritetään sen äänenpaineen tason perusteella ilmaistuna dB vertailuarvona 1 μPa, kuvitteellisella 1 metrin etäisyydellä oletetusta äänilähteestä.

Vertailussa käytetään eri vertailupainetasot hankaloittavat äänen vertailua ilmassa ja vedessä. Lisäksi koska ilman ja veden impedanssit ovat erilaisia, niiden toteutunut tehon virtaus eroaa toisistaan, vaikka painet olisivatkin yhtenäisiä. Ilman ja veden äänitasojen vertailussa on sen vuoksi noudatettava erityistä huolettavata.

Vedenalaiset äänitasot vaihtelevat äänilähteen herätteen ja akustisen ympäristön olosuhteiden mukaan. Äänitasot voidaan määritellä altistuksen sekä keskimääräisen ja/tai suurimman tason mukaan. Seuraavia akustisia parametreja käytetään yleisesti arvioitaessa vedenalaisen äänilähteiden melun vaikutuksia merieläistöön.

4.1 Sovellettavat akustiikkaparametrit

Asiakirjassa käytetään tärkeimmät termit:

Äänenpainetaso (SPL) – ilmaisee äänen voimakkauksen tietysä pisteessä desibleinä (dB) mitattuna. Suhteellisena yksikkönä dB on esitetty vedenalaisissa tutkimuksissa suhteessa 1 mikropascalini (ilmaistaan dB vertailuarvo 1 μPa).

Äänialaltistusas (SLE) – desibeliuure, joka kuvaa, miten paljon energiaa vaikutuskohde (esim. merinisikäs) on vastaanottanut tapahtumasta; normalisoitaan yhden sekunnin jaksoille.
(ilmaistaan dB vertailuarvo 1 μPa²s). Äänialtistustasoa voidaan ajatella äänialtistuksen logaritmisena mittana, jolloin äänialtistustason nousu kolmella desibelillä vastaa äänen energian kaksinkertaistumista.

Kumulaatiivinen äänialtistus (SPL(cum)) – toiseen potenssiin korotettujen paineiden aikaintegraali äänen tai äänisarjojen aikana. Kumulaatiivinen äänialtistus mahdollistaa eripituisen ja -tasoisten äänen kuvaamisen äänienergian kokonaismääränä (ilmaistaan dB vertailuarvo 1 μPa²s).

Huippupainetaso (PEAK) – äänenpaine nollasta huippuun tietynä ajankohtana.

Neliöllinen keskiarvo (RMS) – äänenpaine keskiarvotettuna tietyltä ajalta.

Pulssi/Impulsslääni – katkonainen äänilähde, johon sisältyy yksi tai useampia hetkellisiä ääniä, esimerkiksi ammusten raivaamisen aikana.

Jatkuvan ääni – äänilähde, esimerkiksi laivan moottori, tai humina, kuten putken toiminnan aiheuttama ääni.

RMS SPL on yleisesti käytetty tapa arvioida jatkuvien äänilähteiden vaikutuksia. RMS-äänenpaineen taso tai SPL ilmaisevat paineen neliöllisen keskiarvon impulsin sisältävällä ajankaksolla.

4.2 Vedenalaisten äänilähteiden tasot

Melutasot ja taajuusspekrit on arvioitua potentiaalisille merkittäviä vedenalaisten melun vaikutuksia aiheuttaville äänilähteille olemassa olevien vedenalaisten melun mittausten, äänilähdeasiojen ja NSP:n tutkimusten perusteella.

Jotta kivivaineen kasaukselle saadaan äänen etenemisen mallinnuksessa samanarvoinen äänilähenen melutaso 1 metrin etäisyydellä läheestä, painekenttä takaisinpropagoitiin sylinterimäisen/puolipallomäisen leviämismäennäksen eli 15·log(r) mukaan. Takaisinpropagoointivaiheen tarkoituksena on määrätä 1 m etäisyydellä tehollinen konservatiivinen äänilähteen melutaso, jota käytetään äänen etenemisen mallissa.

Ammusten raivaamista varten suoritettiin tarkempi, yksityiskohtainen äänilähteen melutason takaisinpropagoointilaskenta NSP-hankkeesta saatua todellista, mitattua huippupainedataa käyttäen. Tämä menetelmä sisältää paikkakohdaiset merenpohjan olosuhteet, todellisen mittauspaikan (etäisyys, syvyys) ja sovellettavat vuodenaikakohdaiset vesipaljan tiedot. Takaisinpropagoointivaiheen tarkoituksena on määritää tarkempi äänilähteen melutaso 1 metrin etäisyydellä, mitä käytetään äänen etenemisen mallissa.
5. VEDENALAISEN MELUN ETENEMISEN MALLI

Vedenalaisen äänilähteiden tasot syötetään vedenalaisen melun etenemisen ohjelman, joka laskee äänikentän etäisyyden, syvyyyden ja äänilähteen suunnan funktiona.

Mallissa oletetaan, että lähteävä energia on voimakkaampaa kuin siroonut energia, ja lasketaan ratkaisu lähenteen aallon tasoitukselle. Kaksiosuhteiset siirtovaivuusnastojen arvot approssimoidaan etäisyyden ja syvyyyden suhteen, eli siirtovaivuusnastoa etäisyyden ja syvyyyden funktiona tietystä säteittäisessä tasossa lasketaan läheisistä lähteistä riippumatta (oletetaan, että äänen eteneminen tapahtuu etupäässä pois päin lähteestä).

Melukarttojen osoittamat tasot ilmaisevat suurinta ennustettua melutasoa tietystä paikassa missä tahansa syvyydessä pohjaan saakka. Karttoissa on esitetty seuraavat akustiset parametrit jokaisesta tunnistetusta merkittävästä äänilähteestä:

Kiviaineksen kausas:

- SELc, kumulatiivinen äänialistuksen taso (lineaarinen), dB vertailuarvo 1 μPa²s (2 tunnin jakso)

Ammusten raivaaminen:

- SEL, yhden tapahtuman äänialistuksen taso (lineaarinen), dB vertailuarvo 1 μPa²s (1 tapahtuma)

Akustisen mallinnuksen tulokset (melukartat ja vaikutusetäisyyydet) on esitetyt vedenalaisen äänen tasoina kustakin akustisesta mittarista 50 kilometrin saakka. Lisäksi laadittiin pystysuuntainen äänen etenemisen profiiliirros äänilähteen pääasialliselle taajuuskaistalle. Profiilissa näkyy vedenalaisen äänen etenemisen vaihtelu veden syvyyden mukaan.

6. VEDENALAISEN MELUN VAIKUTUSTEN ARVIOINTI

6.1 Kalat
Kaloihin kohdistuvat vaikutukset keskittyvät fyysisiin vaurioihin ja käyttäytymiseen muutoksiin. Kalojen käyttäytymistä niiden reagoidessa melun ymmärretään toistaiseksi heikosti. Äänenpaineen tasot, jotka saattavat pelottaa joitakin lajeja, voivat houkutella toisia.

Tutkimusalueelle merkityksellisten lajien kuulosta on vain vähän tietoa. Atlantin turska ja Atlantin silakka on sen takia otettu malliksi muille kalalajeille (Halvorsen et al. 2011).

Kaloihin kohdistuvien vaikutusten kynnsyrjä-arvot ovat valinnet Raaböllin meribiologint perustuen tutkimukseen "Popper, ASA S3/SC1.4 TR-2014, Sound Exposure Guidelines for Fishes and Sea Turtles". Raja-arvot on esitetty kappaleessa 6.3.

6.2 Merinisäkkäät
Melun vaikutukset merinisäkkäisiin voidaan yleisesti ottaen jakaavat neljään laajaan ryhmään, joihin lähinnä vaikuttaa yksilön etäisyys äänilähteestä:

- Havaitseminen
- Peittäminen
- Käyttäytymiseen muutokset
- Fysikaaliset vahingot

Havaitsemisetäisyyydet riippuvat taustamelun tasoista ja eläimen kuulokynnynksestä.

Peittäminen on vaikutus, jossa toistua tai pitkä-aikeinen vedenalainen ääni peittää esimerkiksi viestinnän yksilöiden välillä. Peittämistä ei pidetä ongelmana ammusten raivaamisessa.

Käyttäytymiseen muutosten arviointi on vaikeaa. Muutokset vaihtelevat hyvin voimakkaisista reaktioista, kuten panikista tai pakenemisesta, miltälisempiä reaktiineihin, joissa eläin voi kääntyä aäntä kohti tai liikkua hitaasti siitä poispäin. Eläimen reaktio voi kuitenkin vaihdella merkittäväästi kauden, käyttäytymistilan, iän ja sukupuolen sekä käyttäytymisen muutoksia aiheuttavan äänen voimakkuuden, taajuuden ja aikarakenneen mukaan (Southhall et al. 2007).

6.3 Merinisäkkäitä ja kaloja koskevat kriteerit
Taulukoissa 6-1 ja 6-2 on esitetty yhteenveto kynnysarvioista, joilla arvioidaan merenisäkkäisiin ja kaloihin kohdistuvia vaikutuksia. Erä vaikutuksilla, esimerkiksi pysyvä (PTS) tai tilapäinen (TTS) kuulonalenema, on omat kynnysarvonsa.

Taulukko 6-1. Hankkeen meribiologien suosittelemat kynnysarvot pysyvän tai tilapäisen kuulonaleneman aiheuttamiseen merenisäkkäillä ammusten raivaamisen ja kivivaineksen kasauksen seurauksena. Kaikki tason ovat painottamattomia SEL-arvoja.

<table>
<thead>
<tr>
<th>Melun lähe</th>
<th>Laji</th>
<th>TTS (dB vertailuarvo 1 μPa2s SEL cum)</th>
<th>PTS (dB vertailuarvo 1 μPa2s SEL cum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kivivaineen kasaus</td>
<td>Harmaahyje ja norppa</td>
<td>188</td>
<td>200</td>
</tr>
<tr>
<td>kivivaineen kasaus</td>
<td>Pyörääiset</td>
<td>188</td>
<td>203</td>
</tr>
<tr>
<td>Ammusten raivaaminen</td>
<td>Harmaahyje ja norppa</td>
<td>164</td>
<td>179</td>
</tr>
<tr>
<td>Ammusten raivaaminen</td>
<td>Pyörääiset</td>
<td>164</td>
<td>179</td>
</tr>
</tbody>
</table>

Kaikki tasot ovat laajakaisaisia, painottamattomia melun altistustasoja (dB vertailuarvo 1 μPa²s). Kivivaineen kasauksen melun oletetaan kumuloituvaan sen ajanjakson ajan, jonka eläin todennäköisesti varovaisuusperiaatteet mukaisen arvon mukaan viettää melunlähteen lähistöllä.
<table>
<thead>
<tr>
<th>Merieläinryhmä</th>
<th>Ammusten raivaaminen</th>
<th>Arvioinnin tasot</th>
<th>SEL(Cum*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaikutus</td>
<td>dB vertailuarvo 1μPa²s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kooltaa</td>
<td>Kuoleisuus (kuolemaan johtava vamma)</td>
<td>207 dB (229–234 dB peak)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vamma</td>
<td>203 dB</td>
<td></td>
</tr>
</tbody>
</table>

* Kumulatiivinen SEL (1 tapantuma)
7. VEDENALAISEN MELUN ETENEMISETTAIN TULOKSET

Vedenlaiseen äänen etenemisen mallin syöttävät seuraavat parametrit.

7.1 Kiviaineksen kasauksesta aiheutuvan melun tasot ja äänispektri
Melun mittausiedot (Nedwell, 2004, Wyatt 2008) osoittavat, että kiviaineksen kasauksen
aiheuttama paaasaillinen vedenlaisen melu johtuu pinnalla suoritettavista toiminnoista (laivan
moottorit, potkurit, kuljettimet, kiviaineksen kaataminen) eikä niinkään kiviaineksen
joiottamisesta merenpohjaan. Hankkeen aluksen/alusten melupäästot on määritelty yleisesti
saatavana olevan tiedon pohjalta. Taulukossa on tehty +3 dB korjaus RMS-äänenpaineen tasoon
äänen todennäköisen huippupainetason arvioimiseksi. Kunkin äänialähteen SEL-arvot on estimoitu
kahden tunnin jatkuva käytön perusteella. Alusten lähdeetulosta riippuvat aluksen koosta ja
nopeudesta, potkurien mallista, ja muista tekijöistä. Melun voimakkuus ja luonne voi vaihdella
paljonkin jopa saman luokan alusten välillä. Hankkeen lähdetiedot perustuvat sen vuoksi lähinnä
pahimpiin kuvitettavissa oleviin tilanteisiin (esim. melutietoja on sovellettu asteikon yläpäästä
alusluokan korvaavissa indikaattoreissa).

Taulukko 7-1. Jatkuva rakennustyö.

<table>
<thead>
<tr>
<th>Toiminto</th>
<th>Åänialähteen painetaso 1 m etäisyydellä</th>
<th>SEL, dB vertailuarvo 1μPa²s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiviaineksen kasaus</td>
<td>RMS, dB vertailuurvo 1 μPa</td>
<td>SEL, dB vertailuarvo 1 μPa²s</td>
</tr>
<tr>
<td>(dynaminen sijoitus) Wyatt 2008</td>
<td>188</td>
<td>226</td>
</tr>
</tbody>
</table>

Kiviaineksen kasauksesta aiheutuvan melun äänispektri

7.2 Ammusten raivaamisen äänälähteiden tasot ja taajuusalue
Suomen kohteissa ammusten raivaamisen aiheuttamat äänitasot perustuvat toteutuneeseen
suurimpaan ja keskimääräiseen huippupaineeeseen, jonka mittausiedot kerättiin raivatessa
Mitattujen tietojen tarkastelu osoitti, että ammusten yhdistetyn räjähdyssaineen paino, raivaamiseen käytetyn räjähdyssaineen paino ja aiheutunut huippupaine eivät ole suoraan verrannollisia keskenään. Puuttuva korrelaatio ammusten räjähdyssaineen painon ja mitatun huippupaineen välillä johtuu oletettavasti siitä, että kussakin tapauksessa ammus tuhoutuu täydellisesti, vaikka se ei räjähdä kokonaan.

Seuraavassa kuvassa on näytetty ammusten raivaamisesta johtuneet mitatut huippupainetasot NSP-hankkeen aikana suhteesa putkeen.

Kuva 7-2. NSP-hankkeen aikaisen ammusten raivaamisen aikana mitatun huippupaineen mittausdot (Nord Stream, Munitons clearance in the Finnish EEZ, 2011).

Kaikki ammusten raivaamisen aikana mitatut huippupainetiedot jaettiin neljälle Suomen alueella sijaitsevalle putken osalle, ja kunkin mallinnuspaikan ympärille. Kustakin osasta käytettiin suurinta ja keskimääräistä mittaustulosta ammusten raivaamisen aiheuttaman vedenalaisten äänilähteiden melutasojen laskemiseen kussakin mallinnuskohteessa (katso taulukko 7-2).
Taulukko 7-2. NSP-hankkeessa raivattujen ammusten lukumäärä jaettuna M1-M4-osilla (suoritettu keväällä).

<table>
<thead>
<tr>
<th>Osa</th>
<th>NSP-hankkeessa raivattujen ammusten lukumäärä (putken kilometrikohdat, KP)</th>
<th>NSP-hankkeen ammusten raivaamisen aikana kerätty keskimääräinen mitattu huippupainetieto, mittauksen etäisyys ja syvyys</th>
<th>NSP-hankkeen ammusten raivaamisen aikana kerätty suurin mitattu huippupainetieto, etäisyys ja syvyys</th>
</tr>
</thead>
</table>
| M1_reieli | 2 (KP110-175) | 150 KPa
300 metrin etäisyys
20 metrin syvyys | 150 KPa
300 metrin etäisyys
20 metrin syvyys |
| M2_reieli | 20 (KP175-220) | 187 KPa
300 metrin etäisyys
34 metrin syvyys | 346 KPa
356 metrin etäisyys
32 metrin syvyys |
| M3_reieli | 20 (KP230-260) | 213 KPa
339 metrin etäisyys
39 metrin syvyys | 812 KPa
339 metrin etäisyys
33 metrin syvyys |
| M4_reieli | 8 (KP250-415) | 206 KPa
300 metrin etäisyys
67 metrin syvyys | 545 KPa
297 metrin etäisyys
98 metrin syvyys |

Yksityiskohtainen äänilähteen melutason takaisinpropagointilaskenta (dBSEA) suoritettiin NSP-hankkeesta saatua todellista, mitattua huippupainetietoa käyttäen. Tämä menetelma sisäsi paikakohtaiset merenpohjan olosuhteet, todellisen mittauspaikan (etäisyys, syvyys) ja sovellettavat vuodenaiakohtaiset vesipatjan tiedot. Takaisinpropagointilaskenteen tarkoituksena on määrittää tarkempia äänilähteen melutason 1 m etäisyydellä, mitä käytetään äänen etenemisen mallissa.

Menetelmä perustuu toteutuunen mitattuun tietoon, ja sen voi olettaa kuvaavan todellista keskimääräistä ja pahinta kuviteltavissa olevaa tilannetta kussakin mallinnuspaikassa.

Taulukko 7-3. Ammusten raivaamisen äänilähteiden kokonaismelutason (dB SEL, 1 metrin etäisyydellä).

<table>
<thead>
<tr>
<th>Paikka/alue</th>
<th>Äänilähde SEL, dB vertailuarvo 1μPa2-sec. 1 metrin etäisyydellä</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1_reieli</td>
<td>Suurin 238</td>
</tr>
<tr>
<td>M1_reieli</td>
<td>Kärä 238</td>
</tr>
<tr>
<td>M2_reieli</td>
<td>Suurin 243</td>
</tr>
<tr>
<td>M2_reieli</td>
<td>Kärä 238</td>
</tr>
<tr>
<td>M3_reieli</td>
<td>Suurin 255</td>
</tr>
<tr>
<td>M3_reieli</td>
<td>Kesk. 241</td>
</tr>
<tr>
<td>M4_reieli</td>
<td>Suurin 252</td>
</tr>
<tr>
<td>M4_reieli</td>
<td>Kärä 246</td>
</tr>
</tbody>
</table>

Nämä äänilähteiden tasot on syötetty malliin (neljä paikkaa, talvi, kesä, suurin [suurin], keskiarvo [Kärä]).
Ammusten äänilähteiden taajuusalue

Kuva 7-3. Ammusten raivaamisen aiheuttaman melun äänispektri (Maxon, Nuuk measurements 2015).

7.3 Syvyysolosuhteet
Merenpohjan profiili on tärkeä parametri, joka vaikuttaa vedenalaisen äänen etenemiseen. Yksityiskohtaiset tiedot syvyysolosuhteista ovat sen vuoksi ehdottoman tarpeen tarkan mallin laatimista varten. Suomen liikennevirasto toimitti kaikki tutkimusalueen syvyysolosuhteita koskevat tiedot.

7.4 **Geoakustiset ominaisuudet**
Tietoja merenpohjasta saatii NSP-hankkeen geologisesta tutkimuksesta alueilta, jotka ovat läheisellä mallinnuspaikkoja; näitä käytettiin mallinnuksessa. Taulukot 7.4 - 7.8 esittävät mallinnukseen otetut kerrokset ja niiden tärkeimmät parametrit. Suomenlähden merenpohjan olosuhteet vaihtelevat tutkimustuloksien perustuvat kunkin alueen keskimääräisiin olosuhteisiin ja niiden katsotaan olevan konservatiivisia suhteessa vedenalaisten äänen etenemiseen.

Taulukko 7.4. **Yleiskuva mallinnuksessa käytettyä merenpohjan geoakustisesta profiilista paikassa M1\textsubscript{Finland} RPI\textsubscript{Finland} \((C_p = \text{puristusaallon nopeus}, \alpha = \text{puristusvaimennus})\).**

<table>
<thead>
<tr>
<th>Merenpohjan kerros (m)</th>
<th>Aines</th>
<th>Geoakustinen ominaisuuksu</th>
</tr>
</thead>
</table>
| 0–3 metriä | Erittäin pehmeä savi | \(C_p = 1700 \text{ m/s} \)
| | | \(\alpha = 1 \text{ dB/m} \) |
| 3–11 metriä | Savi ja karkea sedimentti | \(C_p = 1500 \text{ m/s} \)
| | | \(\alpha = 0,2 \text{ dB/m} \) |
| 11– metriä | Kalliopera | \(C_p = 5250 \text{ m/s} \)
| | | \(\alpha = 0,1 \text{ dB/m} \) |

Taulukko 7.5. **Yleiskuva mallinnuksessa käytettyä merenpohjan geoakustisesta profiilista paikassa M1\textsubscript{Finland} RPI\textsubscript{Finland} \((C_p = \text{puristusaallon nopeus}, \alpha = \text{puristusvaimennus})\).**

<table>
<thead>
<tr>
<th>Merenpohjan kerros (m)</th>
<th>Aines</th>
<th>Geoakustinen ominaisuuksu</th>
</tr>
</thead>
</table>
| 0–3 metriä | Erittäin pehmeä savi | \(C_p = 1700 \text{ m/s} \)
| | | \(\alpha = 1 \text{ dB/m} \) |
| 3–6 metriä | Savi ja karkea sedimentti | \(C_p = 1500 \text{ m/s} \)
| | | \(\alpha = 0,2 \text{ dB/m} \) |
| 6– metriä | Kalliopera | \(C_p = 5250 \text{ m/s} \)
| | | \(\alpha = 0,1 \text{ dB/m} \) |

Taulukko 7.6. **Yleiskuva mallinnuksessa käytettyä merenpohjan geoakustisesta profiilista paikassa M2\textsubscript{Finland} \((C_p = \text{puristusaallon nopeus}, \alpha = \text{puristusvaimennus})\).**

<table>
<thead>
<tr>
<th>Merenpohjan kerros (m)</th>
<th>Aines</th>
<th>Geoakustinen ominaisuuksu</th>
</tr>
</thead>
</table>
| 0–1 metriä | Erittäin pehmeä savi | \(C_p = 1700 \text{ m/s} \)
| | | \(\alpha = 1 \text{ dB/m} \) |
| 1–3 metriä | Savi ja karkea sedimentti | \(C_p = 1500 \text{ m/s} \)
| | | \(\alpha = 0,2 \text{ dB/m} \) |
| 3– metriä | Kalliopera | \(C_p = 5250 \text{ m/s} \)
| | | \(\alpha = 0,1 \text{ dB/m} \) |
Taulukko 7-7. Yleiskuva mallinuksessa käytetystä merenpohjan geoakustisesta profiilista paikassa M3finland (C_p = puristusaallon nopeus, α = puristusvaimennus).

<table>
<thead>
<tr>
<th>Merenpohjan kerros (m)</th>
<th>Aines</th>
<th>Geoakustinen ominaisuus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–2 metrinsä</td>
<td>Erittäin pehmeä savi</td>
<td>$C_p = 1700$ m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = 1$ dB/\lambda</td>
</tr>
<tr>
<td>2–10 metrinsä</td>
<td>Savi ja karkea sedimentti</td>
<td>$C_p = 1500$ m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = 0.2$ dB/\lambda</td>
</tr>
<tr>
<td>10 – metrinsä</td>
<td>Kallioperä</td>
<td>$C_p = 5250$ m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = 0.1$ dB/\lambda</td>
</tr>
</tbody>
</table>

Taulukko 7-8. Yleiskuva mallinuksessa käytetystä merenpohjan geoakustisesta profiilista paikassa M4finland (C_p = puristusaallon nopeus, α = puristusvaimennus).

<table>
<thead>
<tr>
<th>Merenpohjan kerros (m)</th>
<th>Aines</th>
<th>Geoakustinen ominaisuus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–4 metrinsä</td>
<td>Erittäin pehmeä savi</td>
<td>$C_p = 1700$ m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = 1$ dB/\lambda</td>
</tr>
<tr>
<td>4–14 metrinsä</td>
<td>Savi ja karkea sedimentti</td>
<td>$C_p = 1500$ m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = 0.2$ dB/\lambda</td>
</tr>
<tr>
<td>14 – metrinsä</td>
<td>Kallioperä</td>
<td>$C_p = 5250$ m/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\alpha = 0.1$ dB/\lambda</td>
</tr>
</tbody>
</table>

7.5 Äänennonpeusprofiilit

Vesipatjien tiedot (suolapitoisuus, lämpötila/syvyys) saatiin ICES-järjestön HELCOM-kohtaisilta mittausasemilta, jotka sijaitsevat valittujen mallinnuspaikkojen lähellä. Tietojen avulla laskettiin mallinnuspaikkojen äänen nopeuden profiili, ja ne syötettiin vedenalaiseen äänen etenemisen malliin.

Vesipatjien olosuhteille tehdään ennusteen sekä talvea (joulukuu–maaliskuu) että kesää varten (heinäkuu–syyskuu). Kussakin on erilaiset vedenalaisen äänen etenemisen ominaisuukset.
Taulukko 7-9. Äänen nopeuden profiilitietot.

<table>
<thead>
<tr>
<th>Syvyys (m)</th>
<th>M1, R1, M2, R2, M3, R3, M4, R4, R5</th>
<th>Äänen nopeus</th>
<th>Äänen nopeus kesäällä m/s</th>
<th>Äänen nopeus talvella m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1430</td>
<td>1450</td>
<td>1427</td>
<td>1460</td>
<td>1422</td>
<td>1475</td>
<td>1422</td>
<td>1460</td>
<td>1422</td>
<td>1475</td>
</tr>
<tr>
<td>10</td>
<td>1423</td>
<td>1460</td>
<td>1420</td>
<td>1460</td>
<td>1420</td>
<td>1460</td>
<td>1420</td>
<td>1460</td>
<td>1420</td>
<td>1460</td>
</tr>
<tr>
<td>20</td>
<td>1423</td>
<td>1446</td>
<td>1429</td>
<td>1438</td>
<td>1428</td>
<td>1446</td>
<td>1428</td>
<td>1446</td>
<td>1428</td>
<td>1446</td>
</tr>
<tr>
<td>30</td>
<td>1430</td>
<td>1436</td>
<td>1430</td>
<td>1430</td>
<td>1430</td>
<td>1435</td>
<td>1430</td>
<td>1430</td>
<td>1430</td>
<td>1435</td>
</tr>
<tr>
<td>40</td>
<td>1422</td>
<td>1457</td>
<td>1451</td>
<td>1425</td>
<td>1430</td>
<td>1426</td>
<td>1430</td>
<td>1426</td>
<td>1430</td>
<td>1426</td>
</tr>
<tr>
<td>50</td>
<td>1423</td>
<td>1432</td>
<td>1430</td>
<td>1428</td>
<td>1428</td>
<td>1432</td>
<td>1428</td>
<td>1432</td>
<td>1428</td>
<td>1432</td>
</tr>
<tr>
<td>60</td>
<td>1423</td>
<td>1425</td>
<td>1430</td>
<td>1428</td>
<td>1428</td>
<td>1425</td>
<td>1428</td>
<td>1428</td>
<td>1425</td>
<td>1428</td>
</tr>
<tr>
<td>70</td>
<td>1433</td>
<td>1435</td>
<td>1435</td>
<td>1435</td>
<td>1435</td>
<td>1435</td>
<td>1435</td>
<td>1435</td>
<td>1435</td>
<td>1435</td>
</tr>
<tr>
<td>80</td>
<td>1435</td>
<td>1435</td>
<td>1434</td>
<td>1434</td>
<td>1434</td>
<td>1435</td>
<td>1434</td>
<td>1434</td>
<td>1435</td>
<td>1434</td>
</tr>
<tr>
<td>90</td>
<td>1435</td>
<td>1433</td>
<td>1434</td>
<td>1434</td>
<td>1434</td>
<td>1435</td>
<td>1434</td>
<td>1434</td>
<td>1435</td>
<td>1434</td>
</tr>
<tr>
<td>100</td>
<td>1435</td>
</tr>
</tbody>
</table>

Asukaisen numero: 40-50-50-50-50-50-50
8. VEDENALAISEN MELUN MALLINNUKSEN TULOKSET

Tässä esitetään mallinnuksen tulokset eri etäisyyksillä toiminnoista vaikutusten arviointia varten. Tulokset sisältävät profiilikavioita (alueista) suhteessa vaikutuksen kynnysarvoihin.

8.1 Äänen etenemisen mallin skenariot

Kuva 8-1. Esimerkki pystysuuntaisesta kaaviosta, jolla kuvataan kiviaineksen kasauksen aiheuttaman äänen etenemistä (väriskaala) suhteessa syvyyteen (Y-akseli, 60 metriä) ja etäisyyteen (X-akseli, 50 km).

Kuva 8-2. Esimerkkejä pystysuuntaisesta kaaviosta, jolla kuvataan ammusten raivaamisen aiheuttaman äänen etenemistä (väriskaala) suhteessa syvyyteen (Y-akseli, 80 metriä) ja etäisyyteen (X-akseli, 50 km).

8.2 Etäisyydet arvioinnissa sovellettaviin kynnysarvoihin
Seuraavassa taulukossa on esitetty akustisen mallinnuksen tulokset suhteessa suurinpiin etäisyyksiin. Etäisyydet on mitattu kiviaineksen kasauksesta ja ammusten raivaamisesta.
sovellettaviin vedenalaisen melun kynnysarvoihin, jotka on määritetty luvussa 6. Meribiologit ovat näiden etäisyyskisen perusteella arvioineet mahdolliset ympäristövaikutukset merielöstöön.

Taulukko 8-1. Kivianeksen kasauksen arviointi, etäisyydet arvioinnin tasojen kynnysarvoihin.

<table>
<thead>
<tr>
<th>Merieläiniryhmä</th>
<th>kiviaineksen kasaus</th>
<th>RP1 Finland</th>
<th>RP2 Finland</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arvioinnin tasot</td>
<td>Kynnysetäisyysydet</td>
<td>Kynnysetäisyysydet</td>
</tr>
<tr>
<td></td>
<td>SEL(Cum*)</td>
<td>SEL(Cum*)</td>
<td>SEL(Cum*)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaikutus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hylkeet</td>
<td>TTS</td>
<td>PTS</td>
</tr>
<tr>
<td></td>
<td>200 dB</td>
<td>188 dB</td>
<td>203 dB</td>
</tr>
<tr>
<td></td>
<td>0 metria</td>
<td>80 metria</td>
<td>0 metria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyoräiset</td>
<td>TTS</td>
<td>PTS</td>
</tr>
<tr>
<td></td>
<td>188 dB</td>
<td>188 dB</td>
<td>203 dB</td>
</tr>
<tr>
<td></td>
<td>80 metria</td>
<td>80 metria</td>
<td>0 metria</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kalat</td>
<td>207 dB</td>
<td>0 metria</td>
<td>0 metria</td>
</tr>
<tr>
<td>(kuolemaan johtava vamma)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vamma</td>
<td>203 dB</td>
<td>0 metria</td>
<td>0 metria</td>
</tr>
</tbody>
</table>

* *Kumulatiivinen SEL (kahden tunnin kivianeksen kasaus)*

Taulukko 8-2. Ammusten raivaamisen (suurimmat) etäisyydet arvioinnin kynnysarvoihin.

<table>
<thead>
<tr>
<th>Ammusten raivaaminen (suurin)</th>
<th>M1_{Fin,max}</th>
<th>M2_{Fin,max}</th>
<th>M3_{Fin,max}</th>
<th>M4_{Fin,max}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arvioinnin tasot</td>
<td>Kynnysetäisyysydet, suurin</td>
<td>Kynnysetäisyysydet, suurin</td>
<td>Kynnysetäisyysydet, suurin</td>
</tr>
<tr>
<td></td>
<td>SEL(Cum*)</td>
<td>SEL(Cum*)</td>
<td>SEL(Cum*)</td>
<td>SEL(Cum*)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaikutus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hylkeet</td>
<td>179 dB</td>
<td>3500 metria</td>
<td>8000 metria</td>
<td>15000 metria</td>
</tr>
<tr>
<td></td>
<td>164 dB</td>
<td>15000 metria</td>
<td>38000 metria</td>
<td>44000 metria</td>
</tr>
<tr>
<td>Pyoräiset</td>
<td>179 dB</td>
<td>3500 metria</td>
<td>8000 metria</td>
<td>15000 metria</td>
</tr>
<tr>
<td></td>
<td>164 dB</td>
<td>15000 metria</td>
<td>38000 metria</td>
<td>44000 metria</td>
</tr>
<tr>
<td>Kalat</td>
<td>207 dB</td>
<td>50 metria</td>
<td>200 metria</td>
<td>500 metria</td>
</tr>
<tr>
<td>(kuolemaan johtava vamma)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vamma</td>
<td>203 dB</td>
<td>100 metria</td>
<td>300 metria</td>
<td>1500 metria</td>
</tr>
</tbody>
</table>

* *Kumulatiivinen SEL (yksi tapahtuma)*
Taulukko 8.3. (Keskimääräiset) etäisyyydet ammusten raivaamisesta arvioinnin tasojen kynnysarvoihin.

<table>
<thead>
<tr>
<th>Merieläinryhmä</th>
<th>Ammusten raivaaminen (keskimääräinen)</th>
<th>M₁-fin, keskiarvo</th>
<th>M₂-fin, keskiarvo</th>
<th>M₃-fin, keskiarvo</th>
<th>M₄-fin, keskiarvo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arvioinnin tasot</td>
<td>Kynnysetäisyysyydet, suurin</td>
<td>SEL(Cum*)</td>
<td>SEL(Cum*)</td>
<td>SEL(Cum*)</td>
<td>SEL(Cum*)</td>
</tr>
<tr>
<td>SEL(Cum*)</td>
<td>SEL(Cum*)</td>
<td>SEL(Cum*)</td>
<td>SEL(Cum*)</td>
<td>SEL(Cum*)</td>
<td></td>
</tr>
<tr>
<td>Vaikutus</td>
<td>dB vertailuvoro 1μPa2-s</td>
</tr>
<tr>
<td>Hylkeet</td>
<td>PTS</td>
<td>179 dB</td>
<td>3500 metriä</td>
<td>3500 metriä</td>
<td>3500 metriä</td>
</tr>
<tr>
<td></td>
<td>TTS</td>
<td>164 dB</td>
<td>15000 metriä</td>
<td>26000 metriä</td>
<td>19000 metriä</td>
</tr>
<tr>
<td>Pyoräiset</td>
<td>PTS</td>
<td>179 dB</td>
<td>3500 metriä</td>
<td>3500 metriä</td>
<td>3500 metriä</td>
</tr>
<tr>
<td></td>
<td>TTS</td>
<td>164 dB</td>
<td>15000 metriä</td>
<td>26000 metriä</td>
<td>19000 metriä</td>
</tr>
<tr>
<td>Kalat</td>
<td>Kuoleisuus (kuolemaan johtava vamma)</td>
<td>207 dB</td>
<td>229–234 dB (huippuarvo)</td>
<td>50 metriä</td>
<td>50 metriä</td>
</tr>
<tr>
<td></td>
<td>Vamma</td>
<td>203 dB</td>
<td>100 metriä</td>
<td>100 metriä</td>
<td>300 metriä</td>
</tr>
</tbody>
</table>

Kumulatiivinen SEL (1 tapahtuma)

Arvioitu vaikutusetäisyys SEL-kynnysarvojen funktiona määritettiin käikistä ammusten raivaamisen malliskenaarioista. Etäisyysten on esitetty seuraavassa kuvassa.
8.1 Vedenalaisen melun profiiliakaavioit
Seuraavissa kuvissa on esitetty ammusten raivaamisen ja kiviaineksen kasauksen aiheuttaman vedenalaisen melun profiiliakaavioit. Niissä on näytetty vaikutuskynnyksiin sovellettavat akustiset parametrit vesipatjassa kesä- ja talviolosuhteissa.
Kuva 8-4. Kiviaineksen kasaamisen aiheuttamat vedenalaisen melun altistustasot, melun tason profiilikaavioit kynnysarvoihin, dB. (Kesällä/talvella).
Kuva 8-5. Ammusten raivaaminen (keskimääräinen). Vedenalaisen melun altistustasojen profiilikaavioit SEL (1 tapahtuma), dB. (Kesällä).
Kuva 8-6. Ammusten raivaaminen (suurin) Vedenalaisen melun altistustasojen profiilikaavioit SEL (1 tapahtuma), dB. (Kesällä).
Kuva 8-7. Ammusten raivaaminen (keskimääräinen) Vedenalaisen melun altistustasojen profiiliakaavioit SEL (1 tapahtuma), dB. (Talvella).
Kuva 8-8. Ammusten raivaaminen (suurin) Vedenalaisen melun altistustasojen profiilikaavion SEL (1 tapahtuma), dB. (Talvela).
9. JOHTOPÄÄTÖS

Vedenalaisen melun etenemisen tutkimus sekä tunnistettujen, merkittävien vedenalaisen melun lähteiden melukartoitus on suoritettu. Melun aiheuttajia olivat kiviaineens kasasja ja ammusten raivaaminen, ja tutkimus koski Suomen alueelle sijoittuvia putken osia. Tutkimustulosten perusteella arvioitiin mahdolliset ympäristövaikutukset merinisäkkäisiin ja kaloihin. Arviointi on osa ympäristövaikutusten arviointia.

Tulokset on esitetty vaikutusvetäisyystaulukkoina ja kuvina, joissa on esitetty ammusten raivaamisen ja kiviaineksen kasauksen aiheuttaman vedenalaisen melun profiiliaavioit. Niissä on näytetty vaikutuskynnyksiin sovellettavat akustiset parametrit vesipatjassa kesä- ja talviolosuhteissa. Meri-biologit ovat naiden tulosten perusteella arvioineet mahdolliset ympäristövaikutukset merieläisöön.

Vertailu nykytilan vedenalaisen melun tasoihin Itämerellä

Itämeri on puolisuljettu merialue, jota ympäröi yhdeksän valtiota. Itämerellä on kahdeksan osavaltuma-aluetta (vesistöalueen osa), ja sen rannikolla on useita satamia. Itämerellä purjehtii minä tahansa hetkenä arviota noin 2 000 suurta alusta. Kuukausittain noin 3 500–5 000 alusta liikkuu Itämeren vesillä. Merenkulku on sen vuoksi merkittävin ihmisen aiheuttaman vedenalaisen melun lahde.

Merenkulun aiheuttamat nykyiset melutasot ovat mitattu Itämeren poikki kulkevien alusten määrän ja vedenalaisen melun nykytilan perusteella. Melutasot ovat keskimäärin vähintään 100 dB (vertailuarvo 1 µPa.) laivaväylien ulkopuolella ja korkeintaan 110 dB (vertailuarvo 1 µPa.) laivaväylien tavalla.

10. LÄHTEET

Popper, ASA S3/SC1.4 TR-2014, Sound Exposure Guidelines for Fishes and Sea Turtles.

