Rakennuslautakunta on hyväksynyt korjaustapaohjeet 19.10.2007.

Kaupunkisuunnitteluvirasto
Rakennusvalvontavirasto
Puhelin: 310 60004

Teksti ja toimitus: Riitta Salastie, Mikko Tainio
Layout: Toivu Design Oy / Oli Turunen
Julkaissusarjan graafinen suunnittelu: Timo Kaasinen

Lisätietoja:
Lahistorioita Mikko Tainio 310 72835
Arkkitehti TK Riitta Aalto 310 37219
Arkkitehti Taru Tyynismaa 310 37264

ISSN 0787-9024
Riitta Salastie, Mikko Tainio

Pihlajamäen korjaustapaohjeet

Helsingin kaupunkisuunnitteluvirasto
Rakennusvalvontavirasto
© Helsingin kaupunkisuunnitteluvirasto

Teksti: Riitta Salastie, Mikko Tainio

Graafinen suunnittelu ja taitto: Tovia Design Oy | Olli Turunen
Julkaisusarjan graafinen suunnittelu: Timo Kaasinen
Kannen kuva ja kuvasarja sivulla 3: Sari Viertö
Takakannen kuva: Kuvaaja tuntematon

Paino: Edita Oy

Helsingin kaupunkisuunnitteluviraston julkaisuja 2007:11
Pihlajamäen korjaustapohjeet
ISSN 0787-9024
978-952-473-953-5 (pdf)

www.hel.fi/ksv/

Rakennuslautakunta on hyväksynyt
korjaustapohjeet 19.10.2007
Sisältö

Korjaustapaohjeen piiriin kuuluvat taloohjeet 4

Osa I Yleinen osa ... 5

1 Korjaustapaohjeiden taustaa (Riitta Salastie) 7
 1.1 Pihlajamäen lähiö ... 4
 1.2 Pihlajamäen inventoinnit ja arvot 5
 1.3 Pihlajamäen asemakaavan muutos 6
 1.4 Ohjeiden lääkintökohdat ja tavoitteet 6
 1.5 Ohjeiden suhde asemakaavaan ja ohjeiden sitovuus 6
 1.6 Sisältö ja laatimistapa .. 7
 1.7 Ketä ja mitä ohje koskee? .. 8
 1.8 Korjaustapaohjeen rakenne 9
 1.9 Väriohje ... 9

2 Kuntoselvitykset (Mikko Tainio, Aimo Heimala) 12
 2.1 Kuntoarvio .. 10
 2.2 Kuntoevaltuus .. 10

3 Julkisivujen vaurioista ja virheistä (Mikko Tainio, Aimo Heimala) 14
 3.1 Betonijulkisivujen vaurioinnistesta 13
 3.2 Karbonaattimäisyyden ja pakkasrapautumisen 13
 3.3 Rakenteen ja rakenteiden korroosio 13
 3.4 Kiinnityksessä .. 13
 3.5 Lämmöneristyksen ja lisälämmöneristyksen 14
 3.6 Kosteudensäätöjä, saumat 15
 3.7 Rakenteen vaurioihin ... 15
 3.8 Rapautujulkisivuja .. 15
 3.9 Parvekkeet .. 15
 3.10 Ikkunat ja ovet ... 16
 3.11 Muut tekniset korjaukset ja parannukset 16

4 Korjautavat (Mikko Tainio, Aimo Heimala) 25
 4.1 Oikos korjaustapa oikean tiedon pohjalta 18
 4.2 Carbonaattimäisyyden ja ruostumisen korroosio 18
 4.3 Klitoriumkoriaa .. 19
 4.4 Pakkasrapautumisen ja taroja 19
 4.5 kiinnityksen kannatusen ja sidantojen korjaukset 19
 4.6 Saumojen ja tilastollisten suojennusten 19
 4.7 Huolehtia vaurioiden kunnostukseen ja saumoksiin .. 19
 4.8 Palkkasvinnin ja muodostumisen korjaukset 19
 4.9 Mikrobit, homeet ... 20
 4.10 Asbesti, PCB, lyijy ja kreosotti 20
 4.11 Rapautusjulkisivut .. 21
 4.12 Julkisivujen vaurioihin ... 21

5 Modernin korjaamisesta (Riitta Salastie) 27

Osa II Suunnittelujen valinta ja kirjallisuus 5

6 Suunnittelujen / urakoitsijan valinta / työmaan valvonta
 (Mikko Tainio, Aimo Heimala) .. 14

7 Kirjallisuus (Mikko Tainio, Aimo Heimala) 27

Osa III Asuntoyhtiökohtainen korjaustapaohje
 (jaetsa korjausoppaan liitteenä) .. 27

8 Korjaustapaohjeen rakennustyypit ... 27
 Arkitehtuurin ja asemakaavallinen ratkaisu
 Säilyneisyys ja erityispiirteet
 Arvot
 Yhtiökohtainen ohje: Asuntoyhtiö/oosote
 8.1 Julkisivut, ulkovaippa .. 21
 8.1.1 Ulkoseinät .. 21
 8.1.1.1 Porrashuoneet .. 21
 8.1.1.2 Pieneet pihadeutiset .. 21
 8.1.1.3 Kellarikerros/sokkeli ... 21
 8.1.2 Parvekkeet .. 21
 8.1.3 Ikkunat ... 21
 8.1.4 Ulkoseinät .. 21
 8.1.5 Vesikate ja räystäspelit .. 21
 8.2 Sisätilat ... 21
 8.2.1 Porrahuoneet ... 21
 8.2.2 Hiissi ... 21
 8.3 Pihde
Korjaustapaoheiden piiriin kuuluvat taloyhtiöt

Satton tornit
- As.Oy Vuolukiventie 6
- As.Oy Vuolukiventie 8 ja 10
- As.Oy Vuolukiventie 12 ja 14
- As.Oy Granitintie 6–7
- Koy Granitintie 8 ja 13
- As.Oy Granitintie 15

Satton lamellit
- As.Oy Vuolukiventie 2 ja 4
- As.Oy Vuolukiventie 3
- As.Oy Vuolukiventie 5 ja 9
- Koy Vuolukiventie 11
- As.Oy Kiilettie 5
- Koy Kiilettie 3
- Koy Kiilettie 4
- As.Oy Rapakivenkuja 1
- As.Oy Rapakivenkuja 2

Hakan tornit
- As.Oy Maasälävintie 2
- As.Oy Maasälävintie 4
- As.Oy Maasälävintie 6
- As.Oy Maasälävintie 8
- As.Oy Maasälävintie 12

Hakan korkeat lamellit
- As.Oy Liuskietie 2
- As.Oy Maasälävintie 14

Hakan lamellit / U-lamellit
- As.Oy Liuskietie 6
- Koy Liuskietie 16
- Koy Maasälävintie 5–9
- As.Oy Maasälävintie 16

Hakan lamellit / pohjoisosa
- As.Oy Rapakivenkuja 3–4–5

Hakan terassitalo
- As.Oy Maasälävintie 10
1 Pihlajamäen lähiö

1.1 Pihlajamäen asuntoja

Pihlajamäen asemakaava perustuu viiteen aluesuunnitelmaan, jotka suunniteltiin omikseen rakennuksen ylläpitämiseksi. Sisäosuuksissa rakennusten ulkoava ja sisäinen tyyppi on yhteys rakennuksen ulkonäön ja sisustuksen yhteen.

1 Aseman rakentaminen 1959–1965

1.1 Pihlajamäen lähiö

1 Aseman rakentaminen 1959–1965

1.1 Pihlajamäen lähiö

1 Aseman rakentaminen 1959–1965

1.1 Pihlajamäen lähiö

1 Aseman rakentaminen 1959–1965

1.1 Pihlajamäen lähiö

1.2 Pihlajamäen inventointinait ja arvot

Suojelukaavatun pohjaksi alue on inventoitu ja arvottu\(^4\). Inventointinäyttöö̈n on ollut monessa suhteessa edelläkävijän luontoin\(^5\). Inventoinnissa on selvitetty alueen merkitystä mm. rakennusten arkkitehtuurista, suuraineista ja ympäristöä. Rakennuskunnan inventoinnin ohella Pihlajamäessä on kehitetty menetelmiä alueen maiseman ja viheralueiden arvottamiseksi. Pihlajamäen 1960-luvun kerrostalotalouden on alueen myöhemmin kokemisesta tuleva muutoksista huolimatta asemakaavalaisesti merkittäväksi alueeksi. Yhteiskunnan näkökulmasta tulee tehdä useita korjauksia toiminnan säilyttämiseksi asemakaavatyön ja nyt käsillä olevien korjausohjeiden avulla.

1.3 Pihlajamäen asemakaavan muutos

Kaupunginvaltuuston päätöksellä on suojeltu alueen inventoituksen ja arvotietoja sekä määrittelyä rakennusten ja ympäristön suojelua koskien. Inventoinnit ja arvot

nen pysäköintikentän täydennysraken-
tamisesta Kiilletien–Kiillepolun alueella.
Se rakennus on siis saavuttavissa roite-
vaiheessa 1950-luvun ominaislounne ja arvot huo-
mioon ottaen.

1.4 Ohjeiden lähtökohdat ja tavoitteet

Korjaustapaohjeiden laatimisen lähtökoh-
tana ovat olleet Pihlajamäen kaupunkiku-
valliset ja asemakaavaalliset, kokonaisuu-
den säilyttämistä ja vaalimista koske-
vat tavoitteet. Kokonaisuudessa platKO
kannen tärkeä näkökulmaa on tehne-
lee korjausten alueellinen yhtenäisyyd
Toisin sanoen, keskenään samanlaiset ta-
lot tai seinäraakenteet tulisi Pihlajamäes-
sa korjata yhteisistä korjauksesta nou-
dattaen. Rakennusten arkkitehtuurin vaa-
limisen ja suojelun kannalta tärkeimmiksi
tavoitteeksi on asennettavan tasolla näh-
ty betonijulkisivujen alkuperäisen tai alku-
peräisen kulmaisen alueen säilyttäminen
ja palauttaminen. Kokonaisuuden säilyt-
tämisen vaalimisessa on myös julkisi-
vujen säilyminen suojennuksen, ominais-
pitamisten ja tuotteiden kuin huiväkonto-
ten puuikkonoiden ja -ovien, alkuperäisen
näkökulmaa ja hyväkuntoisen betonijulkisivuen
suojelun kannalta suosiva tai asentamisen
säästötään valitsemaan kohteliaan
järkevää, alueen arkkitehturin ja betonijulkisivujen
kestävyyden kriteerit. On kuitenkin
huomattava, että 1960-luvun rakennuk-
sista päästä täysin nykymääräysten mu
kaiseen tasoon esimerkiksi lämmön-
ja äänenristeyryn osalta eikä tämä edel
lytetä määä asemakaavassa suojelluja rakennus-
kuwattavissa erityisesti. Välittömästi ohjeista hyö-
tyvät vielä korjaamattomat talot.

Valin korjaustavan on täyttänyt teknii-
isen kestävyyden kriteerit. On kuitenkin
huomattava, että 1960-luvun rakennuk-
sisässä on ollut myös tärkeä tietää tätä edel
lytetä määä asemakaavassa suojelluja rakennus-
uksista. Toisin kuin uudemman rakennus-
kunnan osalta, asuntojen ilmanvaih-
dossa ja ilmanlaadussa ei tämän ikäis-
sa taloissa yleensä ole ongelmia. Korja-
usohjeilla ei pyritä estämään rakennus-
sten varustetusta, mutta ohjeet eivät vaikuta jo tehtyihin
korjauksiin ennen kuin vasta seura-
noen, ohjeet eivät vaikuta jo tehtyihin
korjauksiin ennen kuin vasta seura-
noen, ohjeet eivät vaikuta jo tehtyihin
korjauksiin ennen kuin vasta seura-
noen, ohjeet eivät vaikuta jo tehtyihin
korjauksiin ennen kuin vasta seura-

1.5 Ohjeiden suhde

aseamakavaan

Matkalla sekä tarve tarjota yhtiöille julkisivujen
korjauksessa useampia vaihtoehtoja. Lu-
vussa 5 betonijulkisivujen korjausta käsi-
tellään osana laajempaa modernin rakennu-
skunnan korjausta.

Ohjeet astuvat voimaan tulevilla kor-
jaussisoihilla. Ohjeilla ei ehtoakaan
olla tulevat ehtoakaan

Puheenohjaus, rakentamistapaohjeen

3 Helsingissä on laadittu rakennuslautakunnan hyväksymät rakentamistapaohjeet Ruskeasuo an ja Roahu-
uoren 1950-luvun kerrostaloalueille.

4 Asemakaava määryksineen on tämän korjaustapaohjeen liitteenä.
1.6 Sisältö ja laatimistapa

Korjausohjetta varten on käytetty läpi kaikki Pihlajamäen esineet sekä betonijul- kisivujen seinäraakenteen rakennusvalvon-tavirastoon piirustusarkistoa apuna käyttää- en. Ohjetta laadittaessa on hyödynnetty alueelle laadittuja inventointeja sekä in-

As. Oy Maasäläntie 10. Kuva: Veikko Numminen, Hakan arkisto

1.7 Ketä ja mitä ohje koskee?
Ohjeet on laadittu kaikille Pihlajamäen 1960-luvun asuinrakennuksille ja ne koskevat kaikkia alueen asuntoyhtiöitä, joiden omistuksessa olevista rakennuksista on annettu suojelumääräyksiä kaavassa.

1.8 Korjaustapaohjeen rakenne
Pihlajamäen korjaustapaohje on rakenteeltaan kolmiosainen siten että osa I, yleinen osa, ja osa II, suunnitellijan valinta ja kirjallisuus, on kaikille asuntoyhtioille yhteinen. Osat I ja II muodostavat korjaustapaohjeen painetun osan. Hakan alueella korjaustapaohjeisiin liittyy myös painettu väriopas. Yhtiökohtaiset ohjeet, jotka toimitetaan yhtiöille korjaustapaohjeen liitteineen, on esitetty osassa III. Ohjeet koostuvat yhteensä neljästä kirjasta osana III., joten esitetty tekninen ohje

Osa II

Valmistelujärjestelmällä

1.9 Väriohje

2 Kuntooselvitykset

Kaikki ulkoaisissa hoidostuvat korjaukset vaativat tutkimusta ja taustaselvityksiä. Yleensä lähdetään liikkeelle peruskuntoarvion tekemisestä ja vasta sen jälkeen tehdään varsinaiset kuntotutkimukset. Luotettavan tiedon saamiseksi kuntovario ei yleensä ole riittävä, vaan korjattavan rakennusosan oikean korjaustavan varmistamiseksi vaaditaan riittävän laajoja kuntotutkimuksia. Tapauskohtaisesti kuntotutkimukseen kuuluu joko kaikki tai osa seuraavista tutkimuksista:
- Betonien kuntotutkimus julkisivuille ja parvekkeille
- Kosteusmittaukset eri rakenteille
- Rakenteiden kosteusvauriot ja ns. hometutkimukset (mirokbit)
- Lämpökamerakuvaukset
- Tarvittaessa rakenteiden tiiveyskokeet
- Lisäksi selvitetään vedenpoiston toimivuus ja sen parantamistarve.

Rakenteiden rakennusfysikaalinen toimivuus tulee selvittää, koska nykykäyttöön liian vanhoissa rakennuksissa saattaa olla ratkaisuja, jotka kosteusteknisessä mielessä eivät ole riittäviä tai riskialtaisia.

2.1 Kuntoarvio

Kuntoarvio laadinnasta on ohje RT-kortistossa ja malliratkaisu asuinkerrostaloille: RT 18-10760 (tilaajan ohje), RT 18-10785 (kuntoarvio) ja RT 18-10794 (esimerkkiraportti). Julkisivukorjausten suunnittelun lähtökohtana voi olla peruskuntoarvio, mutta sitä on yleensä tarpeen laajentaa, jotta saadaan täsmällistä tiedoa julkisivujen konkretin tilanteesta ja kuntosta. Havaittujen vaurioiden lisäksi tulee selvitää, koska kyseinen työntön mukaan vanhoissa rakennuksissa saattaa olla ratkaisuja, joiden toimivuus kosteusteknisessä mielessä on huonompi toimivaa tai riskialtaista.

2.2 Kuntoutkimus

Aimo Heimala

Pihlajamäen korjaustapohtijet OSA I YLEISET OHJEEET

Pihlajamäen korjaustapohtjet

Betonin kuntotutkimus (näytteenot- to) voidaan tehdä kaksivaiheisesti. Ensin otetaan pienehkö määrä näytteitä, jotka tutkitaan. Tämän pohjalta tutkimusta laaj- jennetaan siten, että korjaussuunnittele voidaan tehdä luotettavasti lopputulos- ta ajatellen ja että ei ole tarvetta korjau- työn aikana enää muuttaa korjausmen- telmiä. On oleellista selvitää myös ter- veellisyyteen liittyvät asiat, kuten raken- nusen lämpötila ja vetoisuus, ilman- vaihto (korvauksimenanti), rakenteissa

Betonin kuntotutkimus (näytteenototo) voidaan tehdä kaksivaiheisesti. Ensin otetaan pienehkö määrä näytteitä, jotka tutkitaan. Tämän pohjalta tutkimusta laajennetaan siten, että korjaussuunnittele voidaan tehdä luotettavasti lopputulossta ajatellen ja että ei ole tarvetta korjaustyön aikana enää muuttaa korjausmenetelmää. On oleellista selvitää myös terveellisyyteen liittyvät asiat, kuten rakennusen lämpötila ja vetoisuus, ilmanvaihto (korvauksimenanti), rakenteissa

3.1 Betonirakenteiden vaurioitumisesta

Betonirakenteiden ikääntyessä tapahtuva vaurioituminen johtuu pääosin ilmaston aiheuttamasta sääräisituksesta, joka saa aikaan materiaalien ominaisuuksien heikkenemistä eli turmeltumista. Turmeltuminen voi olla haitallisen nopeaa, mikäli käytetyt materiaalit tai työsuoritus ovat olleet heikkoa tai rakenneratkaisut virheellisiä tai huonosti toimivia. Säärsitus käynnistää useita rinnakkaisia turmeltumisilmiöitä, jolloin julkisivuvaurioituminen tapahtuu yleensä useiden turmeltumisilmiöiden yhteisvaikutuksesta. Turmeltumisilmiöt ovat alkuvaiheessa hitaasti eteneviä, mutta vaurioiden edetessä turmeltumisnopeus yleensä kiihtyy.

3.2 Karbonatisoituminen ja pakkasrapautuminen

Julkisivujen korjauksia suunniteltaessa tulee tietää ulkokuorien tämän hetkinen kunto ja rakenne. Betonin karbonatisoituminen ei ole vaarallista itse betonille, mutta raudoitteet ruostuvat karbonatisoituneessa betonissa, kun kosteutta ja happea on läsnä. Ulkokuoret karbonisoituvat molemmillalta, mutta karbonatisoitumisilmiö ja rapautuminen on nopeinta ulkokuorien reunolla, koska ilmiö pääsee tapahtumaan kolmelta sivulta.

Tällä hetkellä elementtien betoninaeinestöön johtuen n. 5 % betonista on kestävyydestä tilastollisesti suunnittelemisen mukaan heikompaa. Betonin karbonatisoituminen ei ole vaarallista itse betonille, mutta raudoitteet ruostuvat karbonatisoituneessa betonissa, kun kosteutta ja happea on läsnä. Ulkokuoret karbonisoituvat molemmillalta, mutta karbonatisoitumisilmiö ja rapautuminen on nopeinta ulkokuorien reunolla, koska ilmiö pääsee tapahtumaan kolmelta sivulta.

Tällä hetkellä elementtien betoninaeinestöön johtuen n. 5 % betonista on kestävyydestä tilastollisesti suunnittelemisen mukaan heikompaa. Betonin karbonatisoituminen ei ole vaarallista itse betonille, mutta raudoitteet ruostuvat karbonatisoituneessa betonissa, kun kosteutta ja happea on läsnä. Ulkokuoret karbonisoituvat molemmillalta, mutta karbonatisoitumisilmiö ja rapautuminen on nopeinta ulkokuorien reunolla, koska ilmiö pääsee tapahtumaan kolmelta sivulta.

Tällä hetkellä elementtien betoninaeinestöön johtuen n. 5 % betonista on kestävyydestä tilastollisesti suunnittelemisen mukaan heikompaa. Betonin karbonatisoituminen ei ole vaarallista itse betonille, mutta raudoitteet ruostuvat karbonatisoituneessa betonissa, kun kosteutta ja happea on läsnä. Ulkokuoret karbonisoituvat molemmillalta, mutta karbonatisoitumisilmiö ja rapautuminen on nopeinta ulkokuorien reunolla, koska ilmiö pääsee tapahtumaan kolmelta sivulta.

Tällä hetkellä elementtien betoninaeinestöön johtuen n. 5 % betonista on kestävyydestä tilastollisesti suunnittelemisen mukaan heikompaa. Betonin karbonatisoituminen ei ole vaarallista itse betonille, mutta raudoitteet ruostuvat karbonatisoituneessa betonissa, kun kosteutta ja happea on läsnä. Ulkokuoret karbonisoituvat molemmillalta, mutta karbonatisoitumisilmiö ja rapautuminen on nopeinta ulkokuorien reunolla, koska ilmiö pääsee tapahtumaan kolmelta sivulta.

Tällä hetkellä elementtien betoninaeinestöön johtuen n. 5 % betonista on kestävyydestä tilastollisesti suunnittelemisen mukaan heikompaa. Betonin karbonatisoituminen ei ole vaarallista itse betonille, mutta raudoitteet ruostuvat karbonatisoituneessa betonissa, kun kosteutta ja happea on läsnä. Ulkokuoret karbonisoituvat molemmillalta, mutta karbonatisoitumisilmiö ja rapautuminen on nopeinta ulkokuorien reunolla, koska ilmiö pääsee tapahtumaan kolmelta sivulta.

Tällä hetkellä elementtien betoninaeinestöön johtuen n. 5 % betonista on kestävyydestä tilastollisesti suunnittelemisen mukaan heikompaa. Betonin karbonatisoituminen ei ole vaarallista itse betonille, mutta raudoitteet ruostuvat karbonatisoituneessa betonissa, kun kosteutta ja happea on läsnä. Ulkokuoret karbonisoituvat molemmillalta, mutta karbonatisoitumisilmiö ja rapautuminen on nopeinta ulkokuorien reunolla, koska ilmiö pääsee tapahtumaan kolmelta sivulta.

Tällä hetkellä elementtien betoninaeinestöön johtuen n. 5 % betonista on kestävyydestä tilastollisesti suunnittelemisen mukaan heikompaa. Betonin karbonatisoituminen ei ole vaarallista itse betonille, mutta raudoitteet ruostuvat karbonatisoituneessa betonissa, kun kosteutta ja happea on läsnä. Ulkokuoret karbonisoituvat molemmillalta, mutta karbonatisoitumisilmiö ja rapautuminen on nopeinta ulkokuorien reunolla, koska ilmiö pääsee tapahtumaan kolmelta sivulta.

3.3 Rakennopaksuudet, betoniteräkset

3.4 Kiinnitykset

3.5 Lämmöneristys ja lisälämmöneristys

Lämmöneristyrkeysen osalta ongel- makohdia syntyy etenkin reuna-alueilla, kuten ikkunapielien kohdalla. Lämmön- eristeen minipakkasauksien tulisi olla vä- hintään 5 cm, jotta lääeriänilämmönen on e- merkitystä. Lämmöneristeristä hidas- taa terästen korroosiota merkittävästi ja pakkaspatauloituminen käytännössä lakkaa. ”Ilmasisgoliilla”, auringon säteilyn, il-
mansiunilla, tuuilla ym. on myös oma merkityksensä julkisivujen energiatalous-
den ja talon energiankulutuksen kannalta. Toisaalta eristerekosken pienikin kas-
vattaminen vaikuttaa epäedullisesti ra-
kunnesten arkitehtuurin ja ulkonäköön.
Mitä paksupumpi eristi sitä, on sitä suure-
matt avat ovat mittaamaan muutokset ja siten ongelmat rakennusten arkitehtuu-
rin säilymisen ja alkuperäisen ilmeen kann-
alta. Ovien lämmönristävyyden paran-
taminen lämpöläsje käyttämällä on suot-
tavaa. Toimenpidetä voidaan yleensä teh-
dä olemassa olevia rakenteita hyödyntä-
en; toisin sanoen, vanhoja osia ei tarvit-
se tämän takia ruveta uusimana. Ovia ja ikkunoita kokonaan uusissa rakennu-
den ja ovien karismyyvys tulee valita sel-
laiseksi, että ikkuna sijoitetaan lämmönri-
täyksen kohdalle.

3.6 Kosteusongelmat, saumat
Rakenteen kosteutestinkin toimivuus tu-
lee aina varmista. Umpiorakenteet ovat aina riskialaa- ja niitä tulee välttää. Ulkoseinien sisäkuoro-
teen joko saumata voidaan täyttää tai
ten saumat ovat lähes poikkeuksetta auki.
Ulkoseinien sisäkuoreista, jolloin niitä ei ole mahdollista saa-
nesti myös saumauksissa on täynnä
 ei ole puhdistettu ennen saumusta. Mo-
minen pohjistaan, koska saumauksissa

3.7 Rakennevirheet ja muut uhkakategoriit
Rakennuksissa on olla selvää rakenteel-
lius virheitä, esimerkiksi rakennuksesta
puuttuvat sokkelit, räystäsrakeneen voi olla
virheellinen tai ikkunoiden ja ovien sijain-
ti seinän lämmönristeeseen nähden voi
olla virheellinen. Myös katoksen liittymää-
kohdissa seinäraakenteisiin saattaa esiin-
tyä puutteita. Tällaisten, jo alun perin vir-
heellisesti suunnittelujen tai puutteellis-
ten ratkaisuun takia vedellä voi olla suoo-
rat kulkureitit seinäraakenteiden sisälle ja
itäkä vauut rakennuksen sisätiloihin.
Mikäli rakennuksen ympäristöä maasto vielä
viitettä taloon päin kuten usein on asian-
laista Pihlajamäessäkin, aiheuttaa se yli-
määräistä rasitusta sokkeleille.
Kaikki Pihlajamäen sokkelirakenteet on
alun perin rakennettu virheellisesti, koska

Kaikki Pihlajamäen sokkelirakenteet on
alun perin rakennettu virheellisesti, koska niissä lämmönriste on sijoitettu betoniraka-
teen käsypuolelle. Kuivien tilojen osalta
ranne kuitenkin toimii tai ongelmia ei
yleensä tule esiin. Kosteiden tilojen kuten
esimerkiksi suautuvalojen sisäpuolelta saattaa
kuitenkin tulla ongelmia. Kun kellari
järjestelään uudelleen, tämä on eräs ris-
sitekijä, joka tulisi suunnittelussa ehdot-
tomasti ottaa huomioon.

Mikrobiset, homeet
Mikrobit ovat pieniä silmän näkymättö-
ih eliöitä. Tällaisia eliöryhmiä ovat mm. bakteerit, sienet ja virukset. Rakennus-
ten homeongelmista puhuttaessa tar-
kotetaan yleensä bakteereiden ja mikro-
sienien epänormaalit kasvussa rakennu-
soten käyttöön. Rakenteisiin homegas-
toa muodostaa pääasiassa rakentei-
en kehitettäen toimivuuspuutteiden

Sisäänkäyntien lakatut puu-lasioset ovat
tärkeä sähkön yksityiskohta. Ylilaito,
kapteeni ylilaitkan puutejako on alkuperäi-
nen. Paras elinkaarta pidentää toimenpi-
de on säännöllinen huolto ja korjaus.
Liuskiet 2.
Kuva: Mikko Tainio

P i h l j a m ä e n k o r j a u s t a p a

Y L E I S E T O H J E E T
3.8 Rapatut julkisivut

Taloja kohdissa, joissa esitettävät rappausmennetelmänä mainitaan 3-kerrospappasituudet, Taataksella kannottaessa voidaan tutkia myös 1-kerrospapparussa vaihtoehtoja.

3.9 Parvekkeet

Parvekkeiden takaseinät ovat yleensä levennyt ja levitetty pinta. Parvekkeiden rotu on aiheuttanut parvekkeen rotun. Parvekkeen betoniselle seinälle on säännöllisesti ilmennyt veden eristävä suojelutarkoitus, joka on aiheuttanut parvekkeen rotun.

Parvekkeiden takaseinät ovat yleensä levennyt ja levitetty pinta. Parvekkeiden rotu on aiheuttanut parvekkeen rotun. Parvekkeen betoniselle seinälle on säännöllisesti ilmennyt veden eristävä suojelutarkoitus, joka on aiheuttanut parvekkeen rotun.

rakennusten toiminnallisuuden ja suojelun vaatimusten välillä. Saton korkeissa tornitaloissa parvekkeet ovat kapeat, kahdeksan tornin parvekkeissa on muutettu levää vedettä. Rakennusten arkkitehtuurin on pitkään kaventamallut (syynä esimerkiksi kahden tornin rakennusten tasavarteen ja pienteollisuuskehityksen.

3.10 Ikkunat ja ovet

3.11 Muut tekniset korjaukset ja parannukset
Vesikatolle olisi pyrittävä järjestämään käyttöä sisäänvedon, esimerkiksi porrashuoneesta, pelkät seinätikkaat eivät ole riittäviä. Katolla liikkumista ja huoltoa helppomasti on suositeltavaa kattoja. Porrashuoneiden savunpoisto tulee rakentaa toimittavaksi korjausten yhteydessä. 1

Hakan arkisto, kuvaa tuntumaton

12 Esimerkkiariittukset ovat Liuskete 6:sta mutta vastaavat koko Hakan alueen dettagaalan.
4 Korjaustavat

4.1 Oikea korjaustapa oikean tiedon pohjalta

Tekniset vaatimukset täyttävistä korjauksvaihtoehdoista valitaan se, joka parhaiten täyttää kohteen arkkitehtotutkimuksen ja taloudelliset kriteerit.

4.2 Carbonatisointunut betoni ja raudoitettua korrosio

4.3 Kloridikorrosio

Korrosio on raudoitettua betoniin. Jos klorideja on betonissa runsaasti, korjauskaat sekä rakenteiden uusiminen, vaurioiden selvitä tai raudoitettua käytämyys laitokouluun. Tämä tarkoittaa sitä, että raudoitettuihin korrosioon ei voida estää muulla.
tavoin. Klordeja voi tulla rakenteisiin myös suolauksen johdosta joko suoraan tai autojen mukana esim. paikoitustasoille.

4.4 Pakkasrapautunut betoni
Betonissa on yleensä pakkasrapautumia, kun betonin vetolujudot jäävät alle 1,5 MPa. Kun vetolujudot ovat vähintään 1,5 MPa, betonirakenteet ovat korjattavissa. Rapautunut betoni tulee korjaukseksa poistaa. Jos rapautunut osuuus on merkittävä, tarkoittaa tämä rakenteen uusintaa käytännössä. Pakkasrapautunut betoni aiheuttaa turvallisuusriskein, sillä rakenteisesta voi irrotta betonipalapoja, jotka saattavat pudota ohikulkijoiden päälle ja muodostaa vaaratilanteita.

4.5 Kiinnitysten, kannatusten ja sidontojen korjaus

4.6 Saumojen ja liitosdetaljien turmeltuminen ja muut kosteustekniset toimivuuspuutteet

Kiinnitysten, kannatusten ja sidontojen mutta myös muodostaa vaaratilanteita. Asia tulee kuitenkin varmistaa kuntotutkimuksessa.

4.7 Halkeamat ja muodonmuutokset
Betonirakenteissa halkeamat ja muodonmuutokset, jos ne syntyvät vuosien kuluttua valmistumisesta, ovat merkkejä usein pakkasvaurioitumisesta. Tämä koskee sandwich-elementtien ulkokorokkomia. Massiivirakenteissa halkeamat syntyvät yleensä jo vastustamisen jälkeen. Mikäli halkeamat ovat yli 0,1 mm tai ainakin vähintään 0,2 mm suurudeeltaan ulkorakenteissa, ne tulisi korjata esimerkiksi aikaisemmin. Käytänsä

Myös korjaustapaohjeisiin on sisällytetty piha-alueisiin liittyviä suunnittelutohjeita. Tavoitteena on, että alueelle ei tuotaisi uusia materiaaleja ja aiheita, vaan keskeyttäisiin entisten ylläpitoon ja parantamiseen. Ainekalloon kattueento ja yhjät näkyvat antavat hienot laatuaineita mahdollisuus uusista arkkitehtuurin suunnitelmien kohdalle.

Pinnit ja pintataulukset

Pinnit ja pintataulukset

Pinnat, pinnat ja pinnat

Pinnat, pinnat ja pinnat

Rappaukset

Rappaukset

Julkisivujen vaurioiden korjaustyöt ja korjaustyöt ja korjaustyöt

4.8 Pinnitesteet ja pintatarvike

Pinnat, pinnat ja pinnat

Pinnat, pinnat ja pinnat

10.1 Asbesti, PCB, lyijy ja kreosootti

11.1 Rappauspinnat

Pihlajamäen betoniilähiö 1960-luvun pelkistetyt arkkitehtuurin perustuu yksinkertaisiin rakennuskappaleisiin, ehjien seinäpintojen ja ikkunanauhojen vuoropuheluun, mutta sen vähäeileen yksityis-

Toisen vaihtoehtona perustuvat yksi tarvitsemattomasta, jollainen suurten pohjaan on yhdistetty, että suoritetaan muutamat eristetettä kysymyksen ulkopuolelle. Omistajat ovat suunnitelleet tapaturmaan juuri inventoinneissa ja arkistotyön kullessa esiintynyt Saton ja Hakan alueen värivaloa myöten ilmenemävän erilaisuus.

kaltaisena, milloin on juuri haluttu vastata mittamaailman muutosten synnyttämään haasteeseen.

Pihlajamäen alueella on todettu korjaustapoja, joissa onkin merkittävästi juuri juuri autenttisuuden käsitteen ymmärtämiseen. Perusteluna autenttisuuden laajennusta on ollut nimenomaan teollisen rakentamisen alkuvaiheessa betonirakenteiden rakennustekniikassa puutteita, ja niiden takia rakenteet ja niiden säilyttäminen eivät sellaisenaan voi olla autenttisivujen tapa autenttisuuden käsitteen ymmärtämiseen. Perusteena autenttisuuden laajennusta tulkitaan autenttisuuden käsitteen ymmärtämiseen ja laajennukseen.

Alakuva: Sari Virtio

teen kolmas lasi. Näin päästäisiin konkreettisesti lähemmäksi monien tahojen tavoittelemasta kestävän kehityksen periaatteita ja säilyttäisiin paremmin rakennusten ajalleen yläpinnalle ilme ja materiaalin todistusvoima.

Kuva: Mikko Tainio

Kuva: Sari Virtio

Pihlajamäen korjaustapaohjeet

OSA I

YLEISTETTÄVÄ TAPA

Alkuperäisasussaan säilynyt tyylikkuvuus

1960-luvun rapattu lecbetonijuoksurinttu

jonka säilyminen alkuperäisessä asussa on turvattu suojelumääräyksin uudella

asemakaavalla. Liuskettu 6.

Pihlajamäen korjaustapaohjeet

OSA I

YLEISTETTÄVÄ TAPA

Alkuperäisasussaan säilynyt tyylikkuvuus

1960-luvun rapattu lecbetonijuoksurinttu

jonka säilyminen alkuperäisessä asussa on turvattu suojelumääräyksin uudella

asemakaavalla. Liuskettu 6.

Kuva: Mikko Tainio

Kuva: Sari Virtio

Nyt laaditut ohjeet ovat Helsingissä

laatuaan ensimmäiset 1960-luvun alue

korjaustapaohjeet, jotka on laadittu

yhteistyössä Helsingin kaupunkisuunnitteluviraston ja rakennusvalvontaviraston kanssa. Ohjeissa luotua mallia voidaan soveltaa

muilkakin vastaavilla 1960-luvun alueilla. Siltäänä hopu oral增值uksisuulla vastaavat

ohjeet ovat valmisteilla.

Suunnittelijalla tulisi mielellään olla aikaisempaa kokemusta kulttuurihistoriallisesti arvokkaiden rakennusten korjausrakentamisen suunnittelusta.

Suunnittelutarjous kannattaa pyytää vain päteviltä suunnittelijoilta. Suunnittelijan on helpompi antaa suunnittelutarjouksen, jos suunnittelualan tarvittava pohjatieto on käytettävissä. Liian tiukka suunnittelualakataulu voi vaikuttaa suunnittelun hinnotteluun ja estää työön paneutumisen. Suunnittelun hinta voidaan sopia esimerkiksi tuntiveloituksenä, jolla on sovittu "katto", tai tiettynä prosenttihintaan remontin kokonaiskustannuksista. On syytä sopia myös suunnittelun laajuudet-
ta. Pätevien suunnitelmien ja työselostuksen kanssa on helppo pyytää urakkatarjouksia. Pihlajamäen korjauspankki on kohdasta 2. tarjouksensa on ollut kohdasta 2. pohdittavissa kohdasta 2. suunnitelman pohjana.

Suunnittelijalla tulisi mielellään olla aikaisempaa kokemusta kulttuurihistoriallisesti arvokkaiden rakennusten korjausrakentamisen suunnittelusta.

Suunnittelutarjous kannattaa pyytää vain päteviltä suunnittelijoilta. Suunnittelijan on helpompi antaa suunnittelutarjous, jos suunnittelualan tarvittava pohjatieto on käytettävissä. Liian tiukka suunnittelualakataulu voi vaikuttaa suunnittelun hinnotteluun ja estää työön paneutumisen. Suunnittelun hinta voidaan sopia esimerkiksi tuntiveloituksenä, jolla on sovittu ”katto”, tai tiettynä prosenttihintaan remontin kokonaiskustannuksista. On syytä sopia myös suunnittelun laajuudet-
ta. Pätevien suunnitelmien ja työselostuksen kanssa on helppo pyytää urakkatarjouksia. Pihlajamäen korjauspankki on kohdasta 2. tarjouksensa on ollut kohdasta 2. pohdittavissa kohdasta 2. suunnitelman pohjana.

Seuraava vaihe korjaushankkeessa on suunnittelijan valinta. On erittäin tärkeää, että suunnittelussa käytetään pätevää ja luotettavaa asiantuntijaa, joka tuntee korjausrakentamisen teorian ja käytännön. Pihlajamäen rakennusten kohdal-

Pihlajamäen korjaustapaohjeet ■ OSA I ■ YLEISET OHJEET 27
Kirjallisuus

Lähiöarkkitehtuuri ja rakennustekniikka

- Pihlajamäen inventoinnit
 - Pihlajamäen arvot ja aatteet, Salastie, Riitta, toim., Helsingin kaupunkisuunnitteluviraston julkaisu 2003:5, Pihlajamäen inventoinnit osa I.
 - Pihlajamäen rakennusinventointi 2000, Aedes Oy / Hilkka Högström, Pihlajamäen inventoinnit, osa II.
 - Pihlajamäen maisemaselvitys, Molino Oy, Kaupunkisuunniteluviraston julkaisu 2003:6, Pihlajamäen inventoinnit, osa III

Yleistä julkisivukorjauksiin liittyvää kirjallisuutta

- Pihlajamäen koskevat inventoinnit
 - Pihlajamäen arvot ja aatteet, Salastie, Riitta, toim., Helsingin kaupunkisuunnitteluviraston julkaisu 2003:5, Pihlajamäen inventoinnit osa I.
 - Pihlajamäen rakennusinventointi 2000, Aedes Oy / Hilkka Högström, Pihlajamäen inventoinnit, osa II.
 - Pihlajamäen maisemaselvitys, Molino Oy, Kaupunkisuunniteluviraston julkaisu 2003:6, Pihlajamäen inventoinnit, osa III

Korjaustapaohjeita

- Täipiola. Asunnonäiden korjaus- ja hoito-ohjeisto (valmisteilu)

Yleiset ohjeet

- Asbesti, asbestikartoitus ja siitä aiheutuvat toimenpiteet. KH 90-00181 / RT 08-10521 (1993)
- Kiviaineisten julkisivukorjausten korjaustapojen tutkimus. KH 92-00191. (1994)
- Korjauskustannustutkimus asunto-osakeyhtiössä -kirja. KH 80058. (2001)

Korjaustapaohjeet

Tiivistelmä

Asiasanat

HELSINKI, MODERNIN SUOJELU, BETONIJULKISIVUJEN KORJAUS, 1960-LUKU, KORJAUSRAKENTAMINEN