

Port Shape

Environmental efficiency, Energy efficiency, Efficient port maintenance

Älykäs Satama 8.3.2016, Kotka

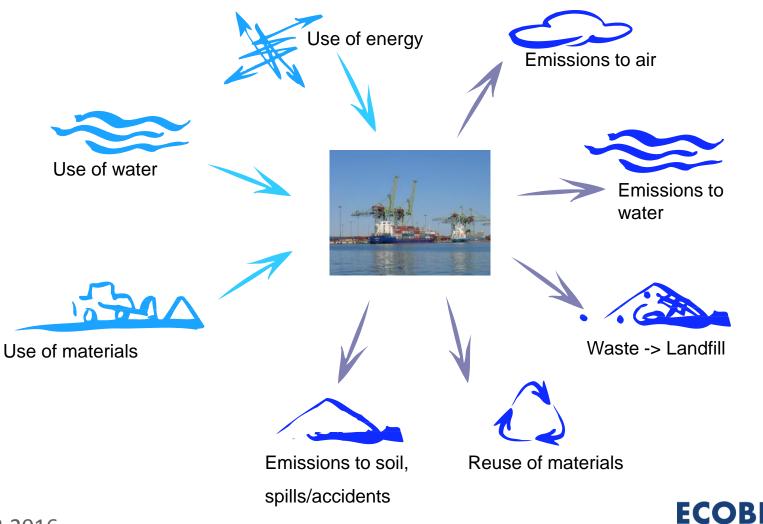
Taru Halla, DI Toimitusjohtaja, johtava konsultti Insinööritoimisto Ecobio Oy

Port Shape

- Environmental Efficiency
- Energy Efficiency
- Efficient port maintenance

Halla - Kajatkari – Pitkälä 2016

Considers all aspects related to port operations


- 1. Emission (air, water, soil), noise & dust control Waste management
 - Environmental monitoring
 - Machinery, traffic, vessels
- 2. Efficient energy use and
 - Optimized use of lights, heating, fuels etc.
 - Measuring the use of energy
- 3. Optimized maintenance
 - Monitoring information about infrastructure and equipment and their maintenance
 - Knowledge about infrastructure e.g. acceptable loads, depths, technical specifications

Environmental Efficiency

Environmental Aspects – measurable data

Typical measured features

- Environmental data:
 - water quality, air emissions (SO2, NOx, PM2,5, methane, VOCs), noise (urban ports; measurement and modeling), amount of waste.
- Use of energy (kWh and euro)
- Are they really used for improving activities or are they measured and reported based on requirement?

Energy Efficiency

Energy Aspects – measurable data

Energy Efficieny – measure and manage

- Key Performance Indicators
- Examples of efficient energy use
 - 1. Lighting control system
 - 2. Use of LED lights
 - 3. Efficient logistic
 - 4. Warming and heating and their optimized efficiency
 - 5. Waste energy usage
 - 6. Machinery and equipment, fuels and energy efficiency
 - 7. IT and smart energy solutions

Optimized maintenance

Optimized maintenance - benefits

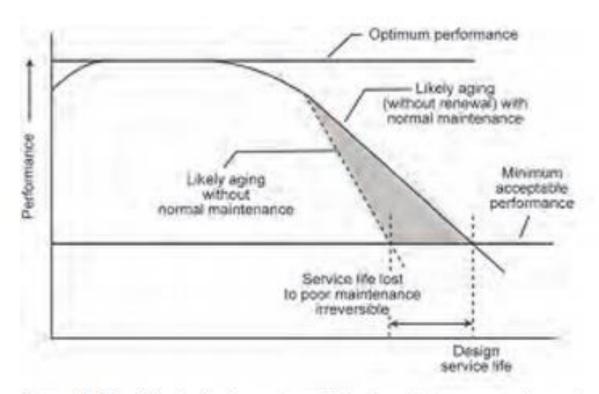


Figure 2.4.1. Effect of adequate and timely maintenance and repairs on the service life of a building (National Research Council 1998).

Source: The Federal Energy Management Program's Operations and Maintenance (O&M) Best Practices Guide.

Halla 8.3.2016

1000

Benefit having all relevant data in one system

- All port infrastructure and equipment to be put into same model with any relevant user data, data in numerical form with location information.
- Administrators and suppliers from different fields can help keeping model up to date.
- Maintenance program to be programmed with alerts
- Benefits in inspections, maintenance and repairs
- May also be used as a tool in planning, decision making, reporting, monitoring etc.
- Achieve economic efficiency and cost savings.

Conclusion

- Environmental Efficiency
- Energy Efficiency
- Efficient port maintenance
- Improved
 - economy
 - use of energy
 - state of environment
 - maintenance and life time and knowledge of infrastructure
 - safety and risk management

For more information

- Consultancy when improving environmental status and environmental efficiency
- Consultancy when optimizing maintenance
- Consultancy when combining all information into one system, in numerical form with location data, either with current system or with a new system
- Environmental management: Managing Director Taru Halla, M.Sc. (Chem. Eng.), Ecobio Oy, <u>taru.halla@ecobio.fi</u>, <u>www.ecobio.fi</u>
- Optimized maintenance, spatial planning: Managing Director Tommi Pitkälä, M.Sc., Pitkälä Oy, tommi@pitkala.fi, www.pitkala.fi
- Riitta Kajatkari, M.Sc. (Technology Civil engineering), riitta.kajatkari@outlook.com

