
API toolkit

Publisher
The 6Aika Open Data and Interfaces
Spearhead Project
Helsinki
Espoo
Vantaa
Tampere
Turku
Oulu

Editor-in-chief
Annukka Varteva

Text
© Forum Virium Helsinki, 2017
v1.0, 2017
Writer: Petja Partanen
User license: CC BY-SA 4.0

Illustrations and layout
© Paper Planes Oy, 2016
User license: CC BY-ND 4.0

These materials can be used as long as the
publisher is credited. The attribution must be
removed if so requested by the publisher of
the material.

The aim of the 6Aika Open Data and Interfaces
Spearhead Project is to bring the opening of
data as part of the cities’ normal operations
and to help the cities facilitate the creation of
data-based services and business.

Content
Basic concepts 5

Open data 5
Application programming interface, API 6

The anatomy of an API 8
When is an API needed? 8
What does an API do? 9
How to create an API 9
Ways of creating an API 11
Data format 12
Data model 13

Building an API 15
Service level agreement 15
Make your API modular 16
Data licenses 16
Terms of API use 16
Open source license types 17

Maintaining and managing an API 19
The life cycle of an API 19
Managing an API 20
The discoverability of APIs 21
Documentation and instructions 21
International and national networks 22

This brochure is intended to be read
in conjunction with the Open API
recommendations for cities publication, which
explores APIs, their importance as part of the
services offered by cities and the objectives
and measures related to APIs on a general
level.

This brochure takes a more detailed
look at the most important issues that
should be taken into consideration in the
implementation of an open API. The brochure
is primarily meant to provide help with
API procurement, due to which it does not
explore the technical intricacies of APIs. The
brochure also includes links to additional
information.

Unless otherwise stated, in this publication
API refers to an open application
programming interface (API).

Open data
Open data is information that has been made available to the public in a
machine-readable format and licensed in a way that allows the data to be
utilised freely and free of charge. Open data is also characterised by the
fact that users do not need to ask permission to utilise it. Open data may
consist of statistics, financial information, maps, images, video recordings
or 3D models, for example.

Open data can be used free of charge by anyone – even for commercial
purposes. Most open data is published by public sector organisations, but
companies, other organisations and private individuals can also open up
their data for use by the public.

Open data serves as digital raw material. It can be refined and combined
with other data, opening up entirely new possibilities for digital services
and business.

Not all public information can be opened up due to privacy and licensing
issues, for example. However, most of the information produced in the
public sector is already public by law and available to anyone who re-
quests access to it.

Basic concepts

5

Publishing data online in a machine-readable format so that it is easily
accessible to everyone around the clock not only facilitates the utilisation
of said data, but also frees up resources that would be otherwise needed
to process information requests. Open data can be published in the form
of individual files or through an open API.

Here are some useful instructions for opening up public data:

• The Ministry of Transport and Communications’ Public data – an
introduction to opening information resources (pdf) publication,
published in 2011, is still a topical guide for opening up the public
sector’s information resources.

• The open data distribution platform avoindata.fi maintained by the
Population Register Centre includes a Guide to open data, which
provides process flow charts for public sector organisations seeking to
open up public data.

• The Helsinki metropolitan area’s Helsinki Region Infoshare service
provides instructions on how to open up data related to the city.

Application programming interface, API

An application programming interface (API) is a way of building connec-
tions between systems, devices and applications. An API includes com-
mands that can be used, for instance, to retrieve data or use the functions
of a back-end system without having to provide third-party access to the
system itself.

For example, the 6Aika cities’ Linked Events API provides access to data on
events held in the 6Aika cities in a unified and machine-readable format,

allowing the data to be used in various services. Thanks to
the API, the event data is not confined to the cities’ own
systems and user interfaces, but can instead be freely uti-
lised in various applications, from smartphones to infor-
mation displays.

APIs intended for the distribution of open data consist
almost exclusively of online Web Services. An API can be a
data API (one example being the 6Aika Open Decision API,

Publishing data
in a machine-
readable format
makes it easier to
utilise.

6

http://www.hri.fi/en/

which provides access to the 6Aika cities’ decision-making
data in a machine-readable format) or a functional API
(one example being the 6Aika Issue Reporting API, which
can also be used to submit issue reports).

Being open means that all the properties of the API are public and that the
API can be used without any restricting terms and conditions.

An open API is
public and can
be used without
restrictions.

Further information:
The definition of an open API: Open API recommendations for
cities, pp. 14–17.

An API provides access to data contained in back-end systems
in a unified format. Different applications can utilise the data
provided through the API in various ways.

7

When is an API needed?
The need for an API is always resolved on a case-by-case basis. An API is
typically needed when the data being utilised is real-time or updated reg-
ularly, for example. However, publishing the data through an API may not
be necessary if the data is updated infrequently, for example only once a
year, or if the amount of data is small.

The best way to start opening up data is to first publish all the data as a
static file, which should be updated at regular intervals. If keeping the data
up-to-date proves time-consuming or if the users of the data would like an
API, the next step is to consider the creation of an open API. Compared to
an API, the main drawback of a static file is that when the data contained
in it is updated, all the services that utilise the data need to be updated
manually. While building an API takes some work, doing so may end up
saving a considerable amount time and effort in the future, for both the
organisation opening up the data and the parties utilising said data.

The key benefit of an API is that the data provided through
it is always up-to-date, which can be vitally important for
the parties utilising the data. A real-time API enables the
creation of real-time applications, such as services that
show the movements of buses or snowploughs on a map,
for example.

The anatomy
of an API

The key benefit of
an API is that the
data stays up-to-
date.

8

When data is published through an open API, the parties looking to utilise
the data do not need access to the back-end system in order to make use
of the data. An API can be integrated directly into the operative system, in
which case access can be restricted to data that is open. Alternatively, an
API can be separated from the operative system and made
to retrieve and add data to its own database at regular
intervals.

What does an API do?

An API provides data in machine-readable format. For
example, the 6Aika cities' Linked Events API enables the re-
trieval of data on events organised in the cities, which can then be utilised
in various digital services. When a service, such as a simple smartphone
application, sends a request to a server running a REST API (such as http
GET api.hel.fi/linkedevents/ v1/event/?start=today), the server retrieves
all the events from the event database that are set to start today or in the
future. The server then confirms the completion of the HTTP request it re-
ceived and returns a response to the client software in JSON format, which
contains data on thousands of events.

This communication process is not that different from the communica-
tion between a web browser and a web server. Regardless of whether
the s ender of a request is a person browsing the web or a piece of client
software, the client sends a request complying with the HTTP protocol to
a network location on the server in accordance with the URI protocol. The
only difference is the message that the server sends back in response:
the response sent by a REST API is stripped of all the elements intended
for human users, such as HTML and CSS codes. What remains is raw data,
which can be easily processed by systems and applications.

How to create an API

One of the first choices that the creator of an API needs to make is the
choice of architectural style. Before REST APIs became common, web APIs
were typically based on SOAP (Simple Object Access Protocol), a stan-
dardised information exchange protocol developed by Microsoft and
based on the XML standard. The lighter and simpler REST architecture style
was introduced in 2000.

An API enables
the creation
of real-time
services.

9

REST-architecture
REST (Representational State Transfer) is an architectural
model for creating programming interfaces based on
the HTTP protocol. Due to its simplicity and reliability,
REST has quickly become the most important software
architecture for creating APIs. It is characterised by
statelessness (all the data related to a request is transferred
in each request), the server-client model and the fact that
it's based on the HTTP ptorocol.

While SOAP is a standardised protocol for information exchange, REST is
not a strict standard, but rather a set of architectural principles. Because
of this, REST provides a greater degree of freedom for API designers.

The differences between REST and SOAP are effectively illustrated in
infographics created by Nordic APIs: nordicapis.com/rest-vs-soap-nor-
dic-apis-infographic-comparison

The popularity of lightweight REST APIs has been growing steadily relative
to SOAP APIs, which are generally considered more complex. However, API

technologies are in a state of constant development, and
in the future REST may very well be supplanted by new
query languages, such as GraphQL. As such, you should
always check how up-to-date your chosen technology is
before creating an API.

The second choice that needs to be made is how to cre-
ate the API. The development of an API can be outsourced
to the provider of the back-end system or to a service

 provider specialising n the development of APIs, or the API can be devel-
oped in-house. One thing you should keep in mind is that an API is not
the same thing as a user interface. The user interface intended for regular
users needs to be built separately on top of the API. The user interface can
be created independently from the API, either internally or by an external
service provider. The table below illustrates the benefits and challenges of
three different ways of creating an API.

The user
interface is built
separately on top
of the API.

10

http://nordicapis.com/rest-vs-soap-nordic-apis-infographic-comparison/
http://nordicapis.com/rest-vs-soap-nordic-apis-infographic-comparison/

1. 2. 3.

The API is provided by the
provider of the back-end system

The provider of the back-end
system conducts minimum
integration, another system
provider creates the API

The provider of the back-end
system conducts minimum
integration, the city creates the
API in-house (requires the city
to have some coding expertise
of its own)

Benefits

 » Utilisation of existing
procurement contracts

 » Ensures the highest
competence in regard to the
back-end system

 » A single provider is
responsible for the entire
system

 » Procurement can be based
on the best API expertise
and developer support

 » A more agile development
model for an external API
(independent from the
back-end system)

 » The back-end system is
effectively isolated from the
public API

 » A more agile development
model for an external API
(independent from the
back-end system)

 » The back-end system is
effectively isolated from the
public API

 » The most agile procurement
model (in-house work
instead of a procurement
process)

Challenges

 » The API competence of
different providers varies

 » Limited readiness for
developer support

 » Dependence on the
back-end system: if the
back-end system is replaced,
a new API has to be created

 » Difficult to replicate in other
cities unless they are using
the same system

 » Integration between two
different systems and
suppliers poses risks in
regard to reliability

 » The back-end system
provider may have limited
interest in developing and
supporting APIs

 » Higher cost (two providers,
no synergy benefits for
the development of the
back-end system)

 » Easier to replicate, but still
requires system-specific
integration for different
back-end systems

 » Limited resources
 » Continuity and maintenance

over the long term
 » Integration between two

different systems and
suppliers poses risks in
regard to reliability

 » The back-end system
provider may have limited
interest in developing and
supporting APIs

 » Easier to replicate, but still
requires system-specific
integration for different
back-end systems

Ways of creating an API

11

Data format

It is also important to choose the right format for presenting the data
provided by the API. The choice should preferably be based on the poten-
tial users of the data: which data format would be the easiest to utilise for
users? The two most popular API data formats are JSON (JavaScript Object
Notation) and XML (Extensible Markup Language).

JSON is a simple open-standard data-interchange format. Despite its name
and the fact that it is derived from JavaScript, JSON is completely lan-
guage-independent. JSON can be easily parsed by both people and com-
puters.

JSON

{“employees”:[
 { “firstName”:”John”, “lastName”:”Doe” },
 { “firstName”:”Anna”, “lastName”:”Smith” },
 { “firstName”:”Peter”, “lastName”:”Jones” }
]}

XML

<employees>
 <employee>
 <firstName>John</firstName> <lastName>Doe</lastName>
 </employee>
 <employee>
 <firstName>Anna</firstName> <lastName>Smith</lastName>
 </employee>
 <employee>
 <firstName>Peter</firstName> <lastName>Jones</lastName>
 </employee>
</employees>

The same data in two different languages. JSON presents the data in a more com-
pact format and can be directly utilised by the objects of different programming
languages.
Source: www.w3schools.com/js/js_json_xml.asp

12

https://www.w3schools.com/js/js_json_xml.asp

XML is a metalanguage similar to HTML developed in the
1990s by the World Wide Web Consortium. It is used to de-
scribe the structure of data without predefined codes. XML
can be used to form new codes, with the help of which
documents can be adapted for a wide range of different
purposes.

The popularity of the structurally simple JSON has grown
rapidly, making it the most popular data format solution for new APIs.

Definition of the JSON language: www.json.org

Definition of the XML language: www.w3.org/TR/REC-xml

If possible, the data format should be harmonised with
other actors that are opening up similar data. You should
also consider providing the data in multiple formats (for
example Excel, CSV, XML, JSON) if the back-end system
allows for this.

Data model

The data model describes the data fields contained in the API and how
they relate to one another. Design a logical data model for your API, pref-
erably international open data models, such as schema.org or Popolo.
From a long-term perspective, using standardised data models improves
the interoperability of information systems.

• The international Popolo standard describes relationships between
organisations and people: www.popoloproject.com

• Schema.org’s vocabularies provide models for
structured data on the Internet: schema.org

JSON presents
data in a more
compact format
than XML.

Choose a data
format that is
easy to use.

Standardised
data models
improve
interoperability.

13

http://www.json.org/
http://www.w3.org/TR/REC-xml/
http://www.popoloproject.com/
http://schema.org/

Data consists of zeroes and ones.
Format is the technical representation of the data.

Data model is the definition of how the data is structu-
red. It also describes what data fields the API contains
and how they relate to one another.

14

Service level agreement

The process of outsourcing services often includes the preparation of a
service level agreement (SLA) between the client and the service provider,
which defines the quality of service to be provided. Drawing up a service
level agreement can also increase the attractiveness of a free API. If you
decide to draw up a service level agreement, be sure to also make it avail-
able to the public.

The aim of the SLA is a sufficient service level for the API, so that users
inside and outside the organisation can rely on its operability. In case of
an error, the users need to have access to a version of the data that is as
up-to-date as possible, even under extraordinary circumstances. Be sure
to set a sufficiently high target service level. If you wish to make your API
attractive to commercial actors, it should be usable without interruptions
and response times should be short.

Developers need to be convinced that their contributions
won’t just suddenly disappear. Do so by publishing a
development plan for your API. Demonstrate to them that
the API will remain available far into the future and that its
development will continue.

Building an API

Reliable APIs
are attractive for
businesses

15

Make your API modular

When designing a new API, be sure to take expandability
into consideration from the get-go. Even a well- designed
API often ends up missing some features that are impor-
tant for users, such as specific data fields or search
 parameters.

The structure of an API’s source code should be designed
in a way that enables the creation of plug-ins and exten-
sions without changing the core of the software. A poorly
designed structure may result in the need to make changes

to the API’s source code, branching the development of the API. Synchron-
ising changes between different branches may prove difficult and require
additional work.

Data licenses

Provide users as much freedom to utilise the data as pos-
sible. An open data license provides the parties utilising
the data with the assurance that the licensed data can be
freely used in the ways permitted by the license.

The license recommended by the JHS Public Administration
Recommendations is Creative Commons Attribution 4.0. Material licensed
under this license can be copied, shared, shown and presented as well as
used as part of another work. The material can be used for both non-com-
mercial and commercial purposes. The material must be attributed to its
creator.

Terms of API use

The terms of API use define who is allowed to use the API and how. Keep
the terms simple: describe practices related to connecting to the API and
whether there any limits on requests, for example. Try to make access to
the API as open as possible. If access to the API is restricted, define and
document the restrictions clearly. If necessary, the use of an API can be
restricted so that users are permitted a specific number of requests free of
charge, after which they can increase their maximum for a fee.

Make sure that
your API can
accommodate
extensions
without the
need to change
the core of the
software.

License the data
that you are
opening up under
an open license.16

If using the API requires an API key or some other form of authentication,
make sure that automatic authentication is possible even outside of office
hours. The very definition of openness requires the API to be usable with-
out any input from an administrator. However, requiring users to log in
may be useful for reaching developers and other users of the API in excep-
tional situations.

Examples of the terms of API use:

• The Finna.fi service of Finnish archives, libraries and museums

• The City of Helsinki’s feedback system

Open source license types

If the API includes source code, license the code under an open source
license, if possible. When choosing an open source license, make sure
the check its compatibility with other licenses, as this affects the range of
tools that can be used with the API.

There are three types of open source licenses:

1. Strong copyleft licenses (such as GPL)

If the original software is modified or new elements are added to it
by linking, for example, the source code must be published under the
same license terms as the original software. This way derivative works
also stay open and subject to the same license terms.

2. Copyleft licenses (such as AGPL, EPL)

If the software is modified, the changes must be published. Published
software can be freely combined with software made under different
licenses. This allows for the incorporation of closed components that
have their own licenses.

Keep the terms of
API use simple.

17

3. Permissive licenses (such as MIT, BSD, Apache)

If the software is modified, the source code can be included in the de-
rivative work, but this is not required. Derivative works are not required
to be open. In other words, the software can be incorporated into
closed software.

Further information:
JHS 169 Use of Open Source software in Public
Administration: www.jhs-suositukset.fi/suomi/jhs169

18

http://www.jhs-suositukset.fi/suomi/jhs169

The life cycle of an API
The life cycle of an API should be planned in the same way as that of any
other system. It should be noted, however, that the life cycle of an API may
differ from that of its back-end system. Publish the planned life cycle of
your API (future updates, versions, etc.) in its documentation and be sure
to update the plan regularly.

Do not make any changes to the version of the API currently in use that
would introduce incompatibility issues. When such changes are necessary,
publish a new version of the API and make sure that the
old version stays functional for a sufficient period of time
alongside the new version. Doing so gives developers time
to modify their client software to function with the new
version of the API.

When an API’s back-end system is nearing the end of its
life, plans must be made on how to carry out a controlled
ramp down of the API in a way that inflicts minimal harm
to other systems and external parties.

Make sure to
provide users
with a sufficient
transition period
when modifying
your API.

Maintaining
and managing
an API

19

Managing an API

An open API is just like any other service provided by a city. As such, an API
needs clearly defined processes, roles and persons responsible in order to
ensure that it remains operational even in exceptional situations.

The management model of an API needs to take both technological and
organisational issues into consideration. The best way to keep things clear
is to draw-up separate plans for both categories. The technical specifica-
tion of the API describes the technology of the API: what types of informa-
tion technology, software and techniques the API uses and what kind of
data it relays.

The technical administration of the service must address at least the fol-
lowing issues or outsource them to a service provider:

Important questions related to the management of an API include who is
responsible for the administration and further development of the API and
how this development is funded.

Technical
administration

 » Monitoring of the API’s
performance

 » Monitoring of server capacity
 » Monitoring and optimisation

of database efficiency
 » Load balancing
 » Responding to error

situations and service
interruptions

Documentation
and user support

 » Maintenance and updating of
documentation

 » Monitoring and documentation
of the API’s usage statistics

 » Planning and providing
notifications of service
interruptions

 » Processing of technical support
requests

Technical
development

 » A development model
that takes into account
the users of the API and
minimises disruptive
changes

 » Iterative improvement of
the API

 » Implementation of new
functionality

20

The discoverability of APIs

Even a great API will remain unutilised if the developer community cannot
find it. The first step to improving discoverability is adding the API to direc-
tory services.

International API directories

• ProgrammableWeb.com is an API directory and news site specialising in
APIs: : www.programmableweb.com

Finnish open data services and directories

• The Population Register Centre’s open data and interoperability
service: www.avoindata.fi

• Helsinki Region Infoshare, the Helsinki metropolitan area’s data
directory: www.hri.fi

• City of Tampere data directory: data.tampere.fi

• City of Oulu data directory: avoindata.ouka.fi

• Southwest Finland data directory: www.lounaistieto.fi

Documentation and instructions
Create a website for your API that provides developers with easy access to
the API’s specifications and the chance to test the API on a browser.

Provide users who wish to test the API with sample requests, the func-
tionality of which has been tested. Explain what the parameters included
in the request do, what fields the retrieved data contains and what they
mean.

Document the format of the response data and any exceptions to the
format thoroughly. It is especially important to thoroughly document the
parameters (filters) available for API requests.

Provide sample code that utilises the API in one or several generally used
programming languages.

21

https://www.programmableweb.com/
https://www.avoindata.fi/fi
http://www.hri.fi/
http://data.tampere.fi
http://avoindata.ouka.fi
http://www.lounaistieto.fi

Good API documentation includes at least the following:

• A functional description of the API

• A technical description of the API

• A description of the data content of the API

• Instructions for implementing and using the API

• Documentation on the data security and privacy protection of the API

• Machine-readable API documentation (such as Swagger, OpenAPI
definition, RAML, JSON Schema)

International and national networks

International organisations

• The Open & Agile Smart Cities initiative (OASC), a city network
established in 2015: www.oascities.org

• Open311, an open source community developing the definition of a civic
issue tracking API: www.open311.org

• Nordic APIs, a Nordic API community: nordicapis.com

• The CitySDK website, an international showcase of CitySDK and 6Aika
API projects: www.citysdk.eu

Public sector organisations specialising in APIs in Finland

• 6Aika – Cooperation strategy for sustainable urban development:
6aika.fi

• The Association of Finnish Local and Regional Authorities:
www.kuntaliitto.fi/asiasanat/avoin-data

• The Government ICT Centre Valtori provides independent ICT services
for central government administration: www.valtori.fi

• The Population Register Centre administers services such as theSuomi.fi
service, which provides citizens with easy access to public services, their
personal information and electronic messages, all in one place. vrk.fi

• The Open Knowledge Finland developer community: fi.okfn.org

• The {API:Suomi} group on Facebook: www.facebook.com/groups/
apisuomi

22

http://www.oascities.org/
http://www.open311.org/about/
https://nordicapis.com/
https://www.citysdk.eu/
https://6aika.fi/
https://www.kuntaliitto.fi/asiasanat/avoin-data
http://www.valtori.fi
http://vrk.fi/
https://fi.okfn.org/
https://www.facebook.com/groups/apisuomi/
https://www.facebook.com/groups/apisuomi/

23

6Aika API cooperation
Forum Virium Helsinki
info@forumvirium.fi

Helsinki
hri@hel.fi

Espoo
ict-palvelut@espoo.fi

Vantaa
ictpalvelut@vantaa.fi

Tampere
avoindata@tampere.fi

Turku
avoindata@turku.fi

Oulu
avoindata@ouka.fi

Contact us

mailto:ict-palvelut%40espoo.fi?subject=

